THE INFLUENCE OF NONLOCAL NONLINEARITIES ON THE LONG-TIME BEHAVIOR OF SOLUTIONS OF BURGERS-EQUATION

被引:45
作者
DENG, K
KWONG, MK
LEVINE, HA
机构
[1] ARGONNE NATL LAB,ARGONNE,IL 60439
[2] IOWA STATE UNIV SCI & TECHNOL,AMES,IA 50011
关键词
D O I
10.1090/qam/1146631
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long time behavior of solutions of Burgers's equation with nonlocal nonlinearities: u(t) = u(xx) + epsilon-uu(x) + 1/2 (a parallel-to u(., t)parallel-to p-1 + b)u, 0 < x < 1, a, epsilon is-an-element-of R, b > 0, p > 1, subject to u(0, t) = u(1, t) = 0. A stability-instability analysis is given in some detail, and some finite time blow up results are given.
引用
收藏
页码:173 / 200
页数:28
相关论文
共 14 条
[1]   EXPLICITLY RESOLVABLE EQUATIONS WITH FUNCTIONAL NON-LINEARITIES [J].
BAZLEY, NW ;
WEYER, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1988, 10 (04) :477-485
[2]  
Burgers J. M., 1948, ADV APPL MECH, V1, P171, DOI [DOI 10.1016/S0065-2156(08)70100-5, 10.1016/S0065-2156(08)70100-5]
[3]  
Burgers J. M., 1939, KON NED AKAD WET, V17, P1
[4]   ANALYSIS OF A CONVECTIVE REACTION-DIFFUSION EQUATION [J].
CHEN, TF ;
LEVINE, HA ;
SACKS, PE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (12) :1349-1370
[5]  
Drazin P.G., 1982, HYDRODYNAMIC STABILI
[6]  
FIEDLER B, COMPLICATED DYNAMICS
[7]   STABILITY AND UNIQUENESS FOR A TURBULENCE MODEL OF BURGERS [J].
HORGAN, CO ;
OLMSTEAD, WE .
QUARTERLY OF APPLIED MATHEMATICS, 1978, 36 (02) :121-127
[9]  
Ladyzhenskaya O. A., 1968, TRANSL MATH MONOGRAP, V23
[10]   ANALYSIS OF A CONVECTIVE REACTION-DIFFUSION EQUATION .2. [J].
LEVINE, HA ;
PAYNE, LE ;
SACKS, PE ;
STRAUGHAN, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (01) :133-147