RANDOMIZED GREEDY MATCHING .2.

被引:36
作者
ARONSON, J [1 ]
DYER, M [1 ]
FRIEZE, A [1 ]
SUEN, S [1 ]
机构
[1] UNIV LEEDS,SCH COMP STUDIES,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
关键词
D O I
10.1002/rsa.3240060107
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the following randomized algorithm for finding a matching M in an arbitrary graph G = (V,E). Repeatedly, choose a random vertex u, then a random neighbour v of u. Add edge {u, v} to M and delete vertices u, v from G along with any vertices that become isolated. Our main result is that there exists a positive constant epsilon such that the expected ratio of the size of the matching produced to the size of largest matching in G is at least 0.5 + epsilon. We obtain stronger results for sparse graphs and trees and consider extensions to hypergraphs. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:55 / 73
页数:19
相关论文
共 5 条
[1]  
Bollobas B., 1988, COLL MATH SOC J BOLY, V52, P113
[2]  
DYER M, 1991, RANDOM STRUCT ALGOR, V2, P29
[3]  
DYER ME, IN PRESS ANN APPL PR
[4]  
Korte B., 1978, ANN DISCRETE MATH, V2, P65, DOI [DOI 10.1016/S0167-5060(08)70322-4, 10.1016/S0167-5060(08)70322-4]
[5]  
MCDIARMID C, 1989, SURVEYS COMBINATORIC, P148