Previous research, however, has shown that cardiac output is either normal or enhanced during exercise in the hyperthyroid state. We therefore hypothesized that blood flow to working skeletal muscle is augmented in hyperthyroid animals during in vivo submaximal exercise and, consequently, that noncardiovascular factors are responsible for intolerance to exercise. To test this hypothesis, rats were made hyperthyroid (Hyper) over 6-12 wk with injections of triiodothyronine (300 mu g/kg). Hyperthyroidism was evidenced by left ventricular hypertrophy [euthyroid (Eut), 2.12 +/- 0.05 mg/g body wt; Hyper, 2.78 +/- 0.06; P < 0.005], 25-60% increases in citrate synthase activities in Hyper hindlimb muscles over those of Eut rats, and higher preexercise heart rates (Eut, 415 +/- 18 beats/min; Hyper, 479 +/- 19; P < 0.025). Regional blood flows were determined by the radiolabeled microsphere method, preexercise, and at 1-2 min of treadmill running at 15 m/min (0% grade). Total hindlimb muscle blood flow preexercise was unaffected (Eut, 31 +/- 4 ml min(-1) 100 g(-1), n = 11; Hyper, 40 +/- 6, n = 9; not significant) but was higher (P < 0.025) in Hyper (127 +/- 17, n = 9) compared with Eut (72 +/- 11, n = 9) during treadmill running. During exercise, flows to individual muscles and muscle sections were similar to 50-150% higher in Hyper compared with Eut rats. Visceral blood flows were largely similar between groups. These findings indicate that hyperthyroidism is associated with augmented blood flow to skeletal muscle during submaximal exercise. Thus hypoperfusion of skeletal muscle does not account for the poor exercise tolerance characteristic of hyperthyroidism.