ON A BOUNDARY VALUE PROBLEM WITH MATRIX COEFFICIENT WHICH HAS SPECTRAL PARAMETER IN BOUNDARY CONDITION

被引:0
作者
Akgun, Fatma Aydin [1 ]
Bayramoglu, Mehmet [1 ]
机构
[1] Yildiz Tekn Univ, Kimya Metaluji Fak, Matemat Muhendisligi Bolomu, Istanbul, Turkey
来源
SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI | 2008年 / 26卷 / 03期
关键词
Self-adjoint operator; spectral parameter; eigenvalue; eigenfunction;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper following boundary value problem is considered. - y'' + Q(x) y = lambda R(x) y, a < x < b y' (x) = 0 beta(1)y(b) - beta(2)y'(b) = lambda alpha y(b) Here Q(x), R(x) is n x n self-adjoint matrix functions, R(x) is positive matrix, alpha, beta(1), beta(2) are constants satisfy some conditions and lambda is a spectral parameter. The spectrum of considered boundary value problem is investigated and the expansion formulas according to eigenvalues are obtained.
引用
收藏
页码:175 / 190
页数:16
相关论文
共 22 条
[11]  
Hellwig G., 1967, DIFFERENTIAL OPERATO
[12]  
Hochstad H., 1989, INTEGRAL EQUATIONS
[13]  
Kato T., 1966, PERTURBATION THEORY, V1st
[14]  
Naimark M.A., 1968, LINEAR DIFFERENTIAL
[15]  
Poisson M., 1820, J LECOLE ROYALE POLI, V11, P417
[16]  
Russakovskii E. M., 1975, FUNCT ANAL APPL+, V9, P358
[17]  
Russakovskii E. M., 1996, T MOSCOW MATH SOC, P159
[18]  
Shkalikov A. A., 1986, J SOV MATH, V33, P1311, DOI [DOI 10.1007/BF01084754, 10.1007/BF01084754]
[19]  
Tychonov A. N., 1956, EQUATIONS MATH PHYS
[20]   REGULAR EIGENVALUE PROBLEMS WITH EIGENVALUE PARAMETER IN BOUNDARY-CONDITION [J].
WALTER, J .
MATHEMATISCHE ZEITSCHRIFT, 1973, 133 (04) :301-312