A BASIC NORM EQUIVALENCE FOR THE THEORY OF MULTILEVEL METHODS

被引:61
作者
BORNEMANN, F
YSERENTANT, H
机构
[1] UNIV TUBINGEN,INST MATH,W-7400 TUBINGEN 1,GERMANY
[2] KONRAD ZUSE ZENTRUM INFORMAT TECH BERLIN,W-1000 BERLIN 31,GERMANY
关键词
D O I
10.1007/BF01388699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Subspace decompositions of finite element spaces based on L2-like orthogonal projections play an important role for the construction and analysis of multigrid like iterative methods. Recently several authors have proved the equivalence of the associated discrete norms with the H1-norm. The present paper gives an elementary, self-contained derivation of this result which is based on the use of K-functionals known from the theory of interpolation spaces.
引用
收藏
页码:455 / 476
页数:22
相关论文
共 28 条
  • [1] Adams R., 2003, SOBOLEV SPACES
  • [2] THE HIERARCHICAL BASIS MULTIGRID METHOD
    BANK, RE
    DUPONT, TF
    YSERENTANT, H
    [J]. NUMERISCHE MATHEMATIK, 1988, 52 (04) : 427 - 458
  • [3] BANK RE, 1980, CNRA159 U TEX AUST C
  • [4] Bank RE, 1990, PLTMG SOFTWARE PACKA
  • [5] Bergh J., 1976, INTERPOLATION SPACES, V223
  • [6] THE CONTRACTION NUMBER OF A MULTIGRID METHOD FOR SOLVING THE POISSON EQUATION
    BRAESS, D
    [J]. NUMERISCHE MATHEMATIK, 1981, 37 (03) : 387 - 404
  • [7] BRAMBLE JH, 1990, MATH COMPUT, V55, P1, DOI 10.1090/S0025-5718-1990-1023042-6
  • [8] BRAMBLE JH, 1991, MATH COMPUT, V57, P23, DOI 10.1090/S0025-5718-1991-1079008-4
  • [9] BRAMBLE JH, 1991, 9147 CORN U MATH SCI
  • [10] Butzer P.L., 1968, APPROXIMATIONSPROZES