SOLITON HIERARCHIES WITH SOURCES AND LAX REPRESENTATION FOR RESTRICTED FLOWS

被引:31
作者
ANTONOWICZ, M [1 ]
RAUCHWOJCIECHOWSKI, S [1 ]
机构
[1] LINKOPING UNIV,DEPT MATH,S-58183 LINKOPING,SWEDEN
关键词
D O I
10.1088/0266-5611/9/2/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a solution to the problem of finding spectral parameter dependent Lax representation for restricted flows of matrix Lax equations by constructing first a Lax representation for soliton hierarchies with sources. Its stationary flows (the restricted flows) naturally posses a Lax representation which can be made local. The general results are exemplified by restricted flows of matrix Schrodinger and AKNS hierarchies.
引用
收藏
页码:201 / 215
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 1976, RUSS MATH SURV+, DOI 10.1070/RM1976v031n01ABEH001446
[2]   RESTRICTED FLOWS OF SOLITON HIERARCHIES - COUPLED KDV AND HARRY-DYM CASE [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (21) :5043-5061
[3]   GELFAND-DIKII HIERARCHIES WITH SOURCES AND LAX REPRESENTATION FOR RESTRICTED FLOWS [J].
ANTONOWICZ, M .
PHYSICS LETTERS A, 1992, 165 (01) :47-52
[4]   LAX REPRESENTATION FOR RESTRICTED FLOWS OF THE KDV HIERARCHY AND FOR THE KEPLER-PROBLEM [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1992, 171 (5-6) :303-310
[5]   CONSTRAINED FLOWS OF INTEGRABLE PDES AND BI-HAMILTONIAN STRUCTURE OF THE GARNIER SYSTEM [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1990, 147 (8-9) :455-462
[6]  
ANTONOWICZ M, 1993, J MATH PHYS, V33, P2115
[7]   NONLINEAR EVOLUTION EQUATIONS SOLVABLE BY INVERSE SPECTRAL TRANSFORM .2. [J].
CALOGERO, F ;
DEGASPERIS, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 39 (01) :1-54
[8]   COMPLETELY INTEGRABLE CLASS OF MECHANICAL SYSTEMS CONNECTED WITH KORTEWEG-DE VRIES AND MULTICOMPONENT SCHRODINGER EQUATIONS [J].
CHOODNOVSKY, DV ;
CHOODNOVSKY, GV .
LETTERE AL NUOVO CIMENTO, 1978, 22 (02) :47-51
[9]   A FAMILY OF INTEGRABLE QUARTIC POTENTIALS RELATED TO SYMMETRICAL-SPACES [J].
FORDY, A ;
WOJCIECHOWSKI, S ;
MARSHALL, I .
PHYSICS LETTERS A, 1986, 113 (08) :395-400
[10]  
FORDY A, 1990, SOLITON PHYSICS MATH