A FAMILY OF POISSON STRUCTURES ON HERMITIAN SYMMETRICAL SPACES

被引:25
作者
KHOROSHKIN, S [1 ]
RADUL, A [1 ]
RUBTSOV, V [1 ]
机构
[1] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
D O I
10.1007/BF02098301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the compatibility of symplectic Kirillov-Kostant-Souriau structure and Poisson-Lie structure on coadjoint orbits of semisimple Lie group. We prove that they are compatible for an orbit compact Lie group iff the orbit is hermitian symmetric space. We prove also the compatibility statement for non-compact hermitian symmetric space. As an example we describe a structure of symplectic leaves on CP(n) for this family. These leaves may be considered as a perturbation of Schubert cells. Possible applications to infinite-dimensional examples are discussed.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 24 条
[1]   HIDDEN QUANTUM SYMMETRIES IN RATIONAL CONFORMAL FIELD-THEORIES [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
NUCLEAR PHYSICS B, 1989, 319 (01) :155-186
[2]   LIE-POISSON GROUPS - REMARKS AND EXAMPLES [J].
CAHEN, M ;
GUTT, S ;
OHN, C ;
PARKER, M .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (04) :343-353
[3]  
DONIN I, 1992, QUANTIZATION R MATRI
[4]  
Drinfel'd V. G., 1985, J SOV MATH, V30, P1975, DOI DOI 10.1007/BF02105860
[5]  
Drinfeld V. G., 1986, P ICM BERKELEY, V1, P789
[6]   ON THE EXCHANGE MATRIX FOR WZNW MODEL [J].
FADDEEV, LD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :131-138
[7]  
FALCETO F, 1991, IHESP19159 PREP
[8]  
GELFAND I, 1978, IPM AN SSSR139 PREPR
[9]  
GUREVICH D, 1992, J GEOM PHYS, V9, P15
[10]  
HELGASON S., 1978, DIFFERENTIAL GEOMETR