UNIQUENESS OF UNCONDITIONAL BASES IN QUASI-BANACH SPACES WITH APPLICATIONS TO HARDY-SPACES

被引:28
作者
KALTON, NJ
LERANOZ, C
WOJTASZCZYK, P
机构
[1] UNIV MISSOURI,DEPT MATH,COLUMBIA,MO 65211
[2] POLISH ACAD SCI,INST MATH,PL-00950 WARSAW,POLAND
关键词
D O I
10.1007/BF02773786
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some general results on the uniqueness of unconditional bases in quasi-Banach spaces. We show in particular that certain Lorentz spaces have unique unconditional bases answering a question of Nawrocki and Ortynski. We then give applications of these results to Hardy spaces by showing the spaces H(p)(T(n)) are mutually non-isomorphic for differing values of n when 0 < p < 1.
引用
收藏
页码:299 / 311
页数:13
相关论文
共 19 条
[1]   LAMBDA(P)-SETS IN DUAL OF D(TO INFINITY) [J].
BONAMI, A .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (02) :193-&
[2]   THE NON-ISOMORPHISM OF H1-SPACES IN ONE AND SEVERAL-VARIABLES [J].
BOURGAIN, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 46 (01) :45-57
[3]  
Bourgain J., 1985, MEMOIRS AM MATH SOC, V322
[4]  
BOURGAIN J, 1983, B SOC MATH BELG B, V35, P127
[5]  
Coifman R. R., 1980, ASTE RISQUE, V77, P12
[6]   ORLICZ SEQUENCE SPACES WITHOUT LOCAL CONVEXITY [J].
KALTON, NJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 81 (MAR) :253-277
[7]  
KALTON NJ, 1982, MICH MATH J, V29, P163
[8]  
Kalton NJ., 1984, GLASGOW MATH J, V25, P141, DOI [10.1017/S0017089500005553, DOI 10.1017/S0017089500005553]
[9]  
LERANOZ C, THESIS U MISSOURI CO
[10]   ABSOLUTELY SUMMING OPERATORS IN LP-SPACES AND THEIR APPLICATIONS [J].
LINDENST.J ;
PELCZYNS.A .
STUDIA MATHEMATICA, 1968, 29 (03) :275-&