Optimization of a Truck-drone in Tandem Delivery Network Using K-means and Genetic Algorithm

被引:254
作者
Ferrandez, Sergio Mourelo [1 ]
Harbison, Timothy [1 ]
Weber, Troy [1 ]
Sturges, Robert [2 ]
Rich, Robert [2 ]
机构
[1] Liberty Univ, Lynchburg, VA 24515 USA
[2] Virginia Tech Univ, Blacksburg, VA USA
来源
JOURNAL OF INDUSTRIAL ENGINEERING AND MANAGEMENT-JIEM | 2016年 / 9卷 / 02期
关键词
evolutionary; K-means; truck drone in tandem delivery network; UAV;
D O I
10.3926/jiem.1929
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose: The purpose of this paper is to investigate the effectiveness of implementing unmanned aerial delivery vehicles in delivery networks. We investigate the notion of the reduced overall delivery time and energy for a truck-drone network by comparing the in-tandem system with a stand-alone delivery effort. The objectives are (1) to investigate the time and energy associated to a truck-drone delivery network compared to standalone truck or drone, (2) to propose an optimization algorithm that determines the optimal number of launch sites and locations given delivery requirements, and drones per truck, (3) to develop mathematical formulations for closed form estimations for the optimal number of launch locations and the optimal total time of delivery. Design/methodology/approach: The design of the algorithm herein computes the minimal time of delivery utilizing K-means clustering to find launch locations, as well as a genetic algorithm to solve the truck route as a traveling salesmen problem (TSP). The optimal solution is determined by finding the minimum cost associated to the parabolic convex cost function. The optimal min-cost is determined by finding the most efficient launch locations using K-means algorithms to determine launch locations and a genetic algorithm to determine truck route between those launch locations. Findings: Results show improvements with in-tandem delivery efforts as opposed to standalone systems. Further, multiple drones per truck are more optimal and contribute to savings in both energy and time. For this, we sampled various initialization variables to derive closed form mathematical solutions for the problem. Originality/value: Ultimately, this provides the necessary analysis of an integrated truck-drone delivery system which could be implemented by a company in order to maximize deliveries while minimizing time and energy. Closed-form mathematical solutions can be used as close estimators for the optimal number of launch locations and the optimal delivery time.
引用
收藏
页码:374 / 388
页数:15
相关论文
共 10 条
[1]  
Allain R, 2013, PHYS AMAZON OCTOCOPT
[2]  
Chen M., 2014, OPTIMAL ROUTING ALGO
[3]   SCHEDULING OF VEHICLES FROM CENTRAL DEPOT TO NUMBER OF DELIVERY POINTS [J].
CLARKE, G ;
WRIGHT, JW .
OPERATIONS RESEARCH, 1964, 12 (04) :568-&
[4]   THE TRUCK DISPATCHING PROBLEM [J].
DANTZIG, GB ;
RAMSER, JH .
MANAGEMENT SCIENCE, 1959, 6 (01) :80-91
[5]   A CLASSIFICATION SCHEME FOR VEHICLE-ROUTING AND SCHEDULING PROBLEMS [J].
DESROCHERS, M ;
LENSTRA, JK ;
SAVELSBERGH, MWP .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1990, 46 (03) :322-332
[6]  
Kirk J., 2007, TRAVELING SALESMAN P
[7]  
Macqueen J., 1967, PROC BERKELEY S MATH, P281
[8]   The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery [J].
Murray, Chase C. ;
Chu, Amanda G. .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2015, 54 :86-109
[9]  
Seber G. A. F., 1984, MULTIVARIATE OBSERVA
[10]  
Spath H., 1985, CLUSTER DISSECTION A