A REFINEMENT OF THE CAUCHY-SCHWARZ INEQUALITY

被引:11
作者
ALZER, H
机构
[1] 5220 Waldbröl
关键词
D O I
10.1016/0022-247X(92)90182-D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove: If xk and yk (k = 1, ..., n) are real numbers satisfying 0 = x0 < x1 ≤ x2 2 ≤ ··· ≤ xn n and 0 < yn ≤ yn - 1 ≤ ··· ≤ y1, then ∑ k=1 nXkYk2 ≤ ∑ k=1 n Yk ∑ k=1 n (X2k- 1 4XkXk-1)Yk with equality holding if and only if xk = kx1 (k = 1, ..., n) and y1 = ··· = yn. Inequality (*) is valid, in particular, if the sequence (xk) is positive and convex. © 1992.
引用
收藏
页码:596 / 604
页数:9
相关论文
共 4 条
[1]  
BULLEN P. S., 1988, MEANS THEIR INEQUALI
[2]  
MCLAUGHLIN HW, 1966, BN454 U MAR TECHN NO
[3]  
Mitrinovic D. S., 1970, ANAL INEQUALITIES, V1
[4]  
Ostrowski A., 1951, VORLESUNGEN DIFFEREN, V2