LINEAR PRESERVERS ON SPACES OF HERMITIAN OR REAL SYMMETRICAL MATRICES

被引:8
作者
BARUCH, EM
LOEWY, R
机构
[1] Department of Mathematics Technion-Israel Institute of Technology
关键词
D O I
10.1016/0024-3795(93)90425-N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H(n) denote the space of all n X n hermitian matrices, and L(n) the space of all n X n real symmetric matrices. Let k be a fixed positive integer, and let T be a linear map on H(n). In this paper we characterize T in each of the following cases: (1) T is rank-k nonincreasing, and Im T contains a matrix A whose rank is greater than k. (2) T preserves the inertia class (k, 0, n - k), and rank T > k2. (3) T is a rank-k preserver in case n > 2 and k = 2, or k is an odd integer. In (1) and (2) we assume k < n. In (2) we may replace H(n) by L(n) provided that the lower bound for rank T is replaced by 1/2k(k + 1). In (3) we may also replace H(n) by L(n), thus obtaining a generalization of a result of Lim, who proved the special cases k = 2 and k = n = odd number.
引用
收藏
页码:89 / 102
页数:14
相关论文
共 12 条
[1]  
BOTTA P, 1987, LINEAR MULTILINEAR A, V20, P197
[2]  
HELTON JW, 1985, LINEAR MULTILINEAR A, V17, P29
[3]  
Johnson C.R., 1986, LINEAR MULTILINEAR A, V19, P21
[4]   LINEAR-MAPS ON HERMITIAN MATRICES - THE STABILIZER OF AN INERTIA CLASS [J].
JOHNSON, CR ;
PIERCE, S .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1985, 28 (04) :401-404
[5]  
LAFFEY TJ, 1990, LINEAR MULTILINEAR A, V26, P81
[6]  
Lim M.H., 1979, LINEAR MULTILINEAR A, V7, P47, DOI DOI 10.1080/03081087908817259
[7]  
Lim M.H., 1975, PUBL I MATH BEOGRAD, V32, P131
[8]  
LIM MH, 1990, 1190 U MAL MATH DEPT
[9]   LINEAR-MAPS WHICH PRESERVE A BALANCED NONSINGULAR INERTIA CLASS [J].
LOEWY, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 134 :165-179
[10]   LINEAR-MAPS THAT PRESERVE AN INERTIA CLASS [J].
LOEWY, R .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (01) :107-112