EXPLICIT 2-STEP METHODS WITH MINIMAL PHASE-LAG FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER INITIAL-VALUE PROBLEMS AND THEIR APPLICATION TO THE ONE-DIMENSIONAL SCHRODINGER-EQUATION

被引:60
作者
SIMOS, TE [1 ]
机构
[1] NATL TECH UNIV ATHENS,DEPT MATH,GR-15773 ATHENS,GREECE
关键词
SCHRODINGER EQUATION; RESONANCE PROBLEM; PHASE-LAG;
D O I
10.1016/0377-0427(92)90224-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two-step sixth-order methods with phase-lag of order eight, ten and twelve are developed for the numerical integration of the special second-order initial-value problem. An application to the one-dimensional Schrodinger equation on the resonance problem indicates that these new methods are generally more accurate than methods developed by Chawla, Rao and Neta (this journal, 1986, 1987).
引用
收藏
页码:89 / 94
页数:6
相关论文
共 11 条
[1]   A HIGH-ORDER METHOD FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD .
COMPUTER PHYSICS COMMUNICATIONS, 1984, 33 (04) :299-304
[2]  
Chawla M. M., 1977, BIT (Nordisk Tidskrift for Informationsbehandling), V17, P128, DOI 10.1007/BF01932284
[3]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337
[4]   2-STEP 4TH-ORDER P-STABLE METHODS WITH PHASE-LAG OF ORDER 6 FOR Y''=F(T,Y) [J].
CHAWLA, MM ;
RAO, PS ;
NETA, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 16 (02) :233-236
[5]   AN EXPLICIT 6TH-ORDER METHOD WITH PHASE-LAG OF ORDER 8 FOR Y''=F(T, Y) [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (03) :365-368
[7]   COLEMAN METHOD MAXIMALLY ADAPTED TO THE SCHRODINGER-EQUATION [J].
IXARU, LG ;
BERCEANU, S .
COMPUTER PHYSICS COMMUNICATIONS, 1987, 44 (1-2) :11-20
[8]  
LAMBERT JD, 1976, J I MATH APPL, V18, P189
[9]   2-STEP METHODS FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION [J].
RAPTIS, AD .
COMPUTING, 1982, 28 (04) :373-378
[10]   A VARIABLE STEP METHOD FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
RAPTIS, AD ;
CASH, JR .
COMPUTER PHYSICS COMMUNICATIONS, 1985, 36 (02) :113-119