HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS

被引:0
作者
Aslani, S. Mohammadi [1 ]
Delavar, M. Rostamian [2 ]
Vaezpour, S. M. [3 ]
机构
[1] Islamic Azad Univ, Karaj Branch, Dept Math, Karaj, Iran
[2] Univ Bojnord, Fac Basic Sci, Dept Math, Bojnord, Iran
[3] Amirkabir Univ Technol, Dept Math & Comp Sci, 424 Hafez Ave, Tehran, Iran
关键词
preinvex function; eta-convex function; Hermite-Hadamard inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with some results about (eta(1), eta(2))-convex functions as a generalization of convex functions. Hermite-Hadamard, trapezoid and mid-point type inequalities are obtained. Also the classes of (eta(1), eta(2))(b)-convex and (eta(1), eta(2))(E)-convex functions are introduced and their relations with (eta(1), eta(2))-convex functions are investigated.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 22 条
[1]   INEQUALITIES OF FEJER TYPE RELATED TO GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS [J].
Aslani, S. Mohammadi ;
Delavar, M. Rostamian ;
Vaezpour, S. M. .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (01) :38-49
[2]   Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex [J].
Barani, Ali ;
Ghazanfari, Amir G. ;
Dragomir, Sever S. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[3]   B-VEX FUNCTIONS [J].
BECTOR, CR ;
SINGH, C .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 71 (02) :237-253
[4]   WHAT IS INVEXITY [J].
BENISRAEL, A ;
MOND, B .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 28 :1-9
[5]  
CERONE P, 2002, ADV STAT COMBINATORI, P53
[6]   Some generalizations of Hermite-Hadamard type inequalities [J].
Delavar, M. Rostamian ;
De La Sen, M. .
SPRINGERPLUS, 2016, 5
[7]   ON η-CONVEXITY [J].
Delavar, Mohsen Rostamian ;
Dragomir, Silvestru Sever .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01) :203-216
[8]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[9]   Nonlinear programming with E-preinvex and local E-preinvex functions [J].
Fulga, C. ;
Preda, V. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 192 (03) :737-743
[10]   ON φ-CONVEX FUNCTIONS [J].
Gordji, M. Eshaghi ;
Delavar, M. Rostamian ;
De La Sen, M. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (01) :173-183