Construction of Antimagic Labeling for the Cartesian Product of Regular Graphs

被引:5
作者
Phanalasy, Oudone [1 ,2 ]
Miller, Mirka [1 ,3 ,4 ,5 ]
Iliopoulos, Costas S. [4 ,6 ]
Pissis, Solon P. [4 ]
Vaezpour, Elaheh [7 ]
机构
[1] Univ Newcastle, Sch Elect Engn & Comp Sci, Newcastle, NSW, Australia
[2] Natl Univ Laos, Dept Math, Viangchan, Laos
[3] Univ West Bohemia, Dept Math, Plzen, Czech Republic
[4] Kings Coll London, Dept Comp Sci, London, England
[5] ITB Bandung, Dept Math, Bandung, Indonesia
[6] Curtin Univ, Digital Ecosyst & Business Intelligence Inst, Ctr Stringol & Applicat, Perth, WA, Australia
[7] Amirkabir Univ Technol, Dept Comp Engn & Informat Technol, Tehran, Iran
关键词
Antimagic graph labeling; Regular graph; Completely separating systems; Cartesian product of graphs;
D O I
10.1007/s11786-011-0084-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An antimagic labeling of a graph with p vertices and q edges is a bijection from the set of edges to the set of integers {1, 2,..., q} such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. A graph is antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that that every connected graph, except K-2, is antimagic. Recently, using completely separating systems, Phanalasy et al. showed that for each k >= 2, q >= (2(k+1)) with k|2q, there exists an antimagic k-regular graph with q edges and p = 2q/k vertices. In this paper we prove constructively that certain families of Cartesian products of regular graphs are antimagic.
引用
收藏
页码:81 / 87
页数:7
相关论文
共 14 条
[1]   Dense graphs are antimagic [J].
Alon, N ;
Kaplan, G ;
Lev, A ;
Roditty, Y ;
Yuster, R .
JOURNAL OF GRAPH THEORY, 2004, 47 (04) :297-309
[2]  
Baca M., 2008, SUPER EDGE ANTIMAGIC
[3]  
Cheng Y., 1996, THEORET COMPUT SCI, V374, P66
[4]   A new class of antimagic Cartesian product graphs [J].
Cheng, Yongxi .
DISCRETE MATHEMATICS, 2008, 308 (24) :6441-6448
[5]   Regular Bipartite Graphs Are Antimagic [J].
Cranston, Daniel W. .
JOURNAL OF GRAPH THEORY, 2009, 60 (03) :173-182
[6]  
Dickson T. J., 1969, Journal of Combinatorial Theory, Series A, V7, P191, DOI 10.1016/S0021-9800(69)80011-6
[7]  
Gallian J.A., 2010, ELECTRON J COMB, V17, pDS6
[8]  
Hartsfield N, 1990, PEARLS GRAPH THEORY
[9]   Anti-magic graphs via the Combinatorial NullStellenSatz [J].
Hefetz, D .
JOURNAL OF GRAPH THEORY, 2005, 50 (04) :263-272
[10]  
Phanalasy O., 2010, LECT NOTES IN PRESS, V6460