MULTIDIMENSIONAL SOLITONS AND THEIR SPECTRAL-TRANSFORMS

被引:38
作者
BOITI, M [1 ]
LEON, JP [1 ]
PEMPINELLI, F [1 ]
机构
[1] UNIV MONTPELLIER 2,PHYS MATH LAB,F-34060 MONTPELLIER,FRANCE
关键词
D O I
10.1063/1.529013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The soliton solution to the hierarchy of two-dimensional nonlinear evolution equations related to the Zakharov-Shabat spectral problem (including the Davey-Stewartson equation) are derived and studied. The solitons are localized two-dimensional structures traveling on straight lines at constant velocities. Their spectral transform is not uniquely defined and this point is discussed by giving two explicit different spectral transforms of the one-soliton solution and also by giving the general dependence of the spectral transform on the definition of the basic Jost-like solutions. © 1990 American Institute of Physics.
引用
收藏
页码:2612 / 2618
页数:7
相关论文
共 21 条
[1]  
ABLOWITZ MJ, 1983, STUD APPL MATH, V69, P135
[2]  
BEALS R, 1985, P SYMP PURE MATH, V43, P45
[3]   INTEGRABLE TWO-DIMENSIONAL GENERALIZATION OF THE SINE-GORDON EQUATION AND SINH-GORDON EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (01) :37-49
[4]  
BOITI M, 1988, STUD APPL MATH, V78, P1
[5]   SCATTERING OF LOCALIZED SOLITONS IN THE PLANE [J].
BOITI, M ;
LEON, JJP ;
MARTINA, L ;
PEMPINELLI, F .
PHYSICS LETTERS A, 1988, 132 (8-9) :432-439
[6]   ON THE SPECTRAL TRANSFORM OF A KORTEWEG-DEVRIES EQUATION IN 2 SPATIAL DIMENSIONS [J].
BOITI, M ;
LEON, JJP ;
MANNA, M ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1986, 2 (03) :271-279
[7]   SPECTRAL TRANSFORM FOR A 2-SPATIAL DIMENSION EXTENSION OF THE DISPERSIVE LONG-WAVE EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (03) :371-387
[8]   BACKLUND-TRANSFORMATIONS VIA GAUGE TRANSFORMATIONS IN 2+1 DIMENSIONS [J].
BOITI, M ;
KONOPELCHENKO, BG ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1985, 1 (01) :33-56
[9]   INTEGRABLE NON-LINEAR EVOLUTIONS IN 2+1 DIMENSIONS WITH NON-ANALYTIC DISPERSION-RELATIONS [J].
BOITI, M ;
LEON, JJP ;
MARTINA, L ;
PEMPINELLI, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (18) :3611-3627
[10]   ON A SPECTRAL TRANSFORM OF A KDV-LIKE EQUATION RELATED TO THE SCHRODINGER OPERATOR IN THE PLANE [J].
BOITI, M ;
LEON, JJP ;
MANNA, M ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (01) :25-36