LINEAR PRESERVERS OF BALANCED SINGULAR INERTIA CLASSES

被引:3
作者
LOEWY, R [1 ]
PIERCE, S [1 ]
机构
[1] SAN DIEGO STATE UNIV,DEPT MATH,SAN DIEGO,CA 92182
关键词
D O I
10.1016/0024-3795(94)90105-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S(n) denote the real symmetric n x n matrices and H(n) the real vector space of n x n hermitian matrices. For 1 less than or equal to r less than or equal to n/2, let G(r, r, n - 2r) be the inertia class of all matrices in S(n) (in H(n)) with exactly r positive, r negative, and n - 2r zero eigenvalues. If T is a linear transformation on S(n) (on H(n)) such that T maps G(r, r, n - 2r) into itself, we classify T provided that n greater than or equal to 5r.
引用
收藏
页码:61 / 77
页数:17
相关论文
共 17 条
[1]   ON MATRICES WHOSE REAL LINEAR COMBINATIONS ARE NONSINGULAR [J].
ADAMS, JF ;
LAX, PD ;
PHILLIPS, RS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (02) :318-&
[2]  
Artin E., 1958, GEOMETRIC ALGEBRA
[3]  
BARUCH EM, IN PRESS LINEAR ALGE
[4]   SPACES OF MATRICES OF EQUAL RANK [J].
BEASLEY, LB .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 38 (JUN) :227-237
[5]  
CHOI MD, 1982, P SYMP PURE MATH, V38, P583
[6]   POSITIVE SEMIDEFINITE BIQUADRATIC FORMS [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (02) :95-100
[7]  
HELTON JW, 1985, LINEAR MULTILINEAR A, V17, P29
[8]  
Johnson C.R., 1986, LINEAR MULTILINEAR A, V19, P21
[9]   LINEAR-MAPS ON HERMITIAN MATRICES - THE STABILIZER OF AN INERTIA CLASS [J].
JOHNSON, CR ;
PIERCE, S .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1985, 28 (04) :401-404
[10]   LINEAR-MAPS WHICH PRESERVE A BALANCED NONSINGULAR INERTIA CLASS [J].
LOEWY, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 134 :165-179