INDUCED MATCHINGS IN CUBIC GRAPHS

被引:105
作者
HORAK, P
QING, H
TROTTER, WT
机构
[1] ARIZONA STATE UNIV,DEPT MATH,TEMPE,AZ 85287
[2] BELL COMMUN RES INC,MORRISTOWN,NJ
关键词
D O I
10.1002/jgt.3190170204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the edge set of a cubic graph can always be partitioned into 10 subsets, each of which induces a matching in the graph. This result is a special case of a general conjecture made by Erdos and Nesetril: For each d greater-than-or-equal-to 3, the edge set of a graph of maximum degree d can always be partitioned into right perpendicular 5d2/4 left perpendicular subsets each of which induces a matching.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 8 条
[1]  
ANDERSEN LD, IN PRESS ANN DISCRET
[2]   INDUCED MATCHINGS [J].
CAMERON, K .
DISCRETE APPLIED MATHEMATICS, 1989, 24 (1-3) :97-102
[3]   THE MAXIMUM NUMBER OF EDGES IN 2K2-FREE GRAPHS OF BOUNDED DEGREE [J].
CHUNG, FRK ;
GYARFAS, A ;
TUZA, Z ;
TROTTER, WT .
DISCRETE MATHEMATICS, 1990, 81 (02) :129-135
[4]   PROBLEMS AND RESULTS IN COMBINATORIAL ANALYSIS AND GRAPH-THEORY [J].
ERDOS, P .
DISCRETE MATHEMATICS, 1988, 72 (1-3) :81-92
[5]   INDUCED MATCHINGS IN BIPARTITE GRAPHS [J].
FAUDREE, RJ ;
GYARFAS, A ;
SCHELP, RH ;
TUZA, Z .
DISCRETE MATHEMATICS, 1989, 78 (1-2) :83-87
[6]  
FAUDREE RT, UNPUB STRONG CHROMAT
[7]  
Hall P, 1935, J LOND MATH SOC, V10, P26, DOI DOI 10.1112/JLMS/S1-10.37.26
[8]  
HORAK P, UNPUB STRONG CHROMAT