INTEGRABILITY AND SEIBERG-WITTEN EXACT SOLUTION

被引:425
作者
GORSKY, A
KRICHEVER, I
MARSHAKOV, A
MIRONOV, A
MOROZOV, A
机构
[1] LD LANDAU THEORET PHYS INST,MOSCOW 117940,RUSSIA
[2] UNIV UPPSALA,INST THEORET PHYS,S-75121 UPPSALA,SWEDEN
[3] INST THEORET & EXPTL PHYS,MOSCOW 117259,RUSSIA
[4] PN LEBEDEV PHYS INST,DEPT THEORY,MOSCOW 117924,RUSSIA
关键词
D O I
10.1016/0370-2693(95)00723-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The exact Seiberg-Witten (SW) description of the light sector in the N = 2 SUSY 4d Yang-Mills theory [N. Seiberg and E. Witten, Nucl. Phys. B 430 (1994) 485 (E); B 446 (1994) 19] is reformulated in terms of integrable systems and appears to be a Gurevich-Pitaevsky (GP) [A. Gurevich and L. Pitaevsky, JETP 65 (1973) 65; see also, S. Novikov, S. Manakov, L. Pitaevsky and V. Zakharov, Theory of solitons] solution to the elliptic Whitham equations, We consider this as an implication that the dynamical mechanism behind the SW solution is related to integrable systems on the moduli space of instantons. We emphasize the role of the Whitham theory as a possible substitute of the renormalization-group approach to the construction of low-energy effective actions.
引用
收藏
页码:466 / 474
页数:9
相关论文
共 35 条
[1]  
ANSELM AA, 1989, ZH EKSP TEOR FIZ, V69, P670
[2]  
ARGYRES P, IAS9494 PREPR
[3]   THEORY OF HADRONIC STRUCTURE [J].
CALLAN, CG ;
DASHEN, RF ;
GROSS, DJ .
PHYSICAL REVIEW D, 1979, 19 (06) :1826-1855
[4]  
DOUGLAS M, RU9512 PREPR
[5]  
DUBROVIN B, SISSA8994FM PREPR
[6]   HAMILTONIAN-FORMALISM OF WHITHAM-TYPE HIERARCHIES AND TOPOLOGICAL LANDAU-GINSBURG MODELS [J].
DUBROVIN, BA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (01) :195-207
[7]  
DUBROVIN BA, 1989, USP MAT NAUK, V44, P29, DOI DOI 10.1070/RM1989V044N06ABEH002300
[8]   INSTANTON-BASED VACUUM FROM THE FEYNMAN VARIATIONAL PRINCIPLE [J].
DYAKONOV, DI ;
PETROV, VY .
NUCLEAR PHYSICS B, 1984, 245 (02) :259-292
[9]  
FOCK V, ITEP2793 PREPR
[10]   RELATIVISTIC CALOGERO-MOSER MODEL AS GAUGED WZW THEORY [J].
GORSKY, A ;
NEKRASOV, N .
NUCLEAR PHYSICS B, 1995, 436 (03) :582-608