EFFECT OF DIABETES AND FASTING ON GLUT-4 (MUSCLE FAT) GLUCOSE-TRANSPORTER EXPRESSION IN INSULIN-SENSITIVE TISSUES - HETEROGENEOUS RESPONSE IN HEART, RED AND WHITE MUSCLE

被引:134
作者
CAMPS, M [1 ]
CASTELLO, A [1 ]
MUNOZ, P [1 ]
MONFAR, M [1 ]
TESTAR, X [1 ]
PALACIN, M [1 ]
ZORZANO, A [1 ]
机构
[1] UNIV BARCELONA,FAC BIOL,DEPT BIOQUIM & FISIOL,AVDA DIAGONAL 645,E-08028 BARCELONA,SPAIN
关键词
D O I
10.1042/bj2820765
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
1. GLUT-4 glucose-transporter protein and mRNA levels were assessed in heart, red muscle and white muscle, as well as in brown and white adipose tissue from 7-day streptozotocin-induced diabetic and 48 h-fasted rats. 2. In agreement with previous data, white adipose tissue showed a substantial decrease in GLUT-4 mRNA and protein levels in response to both diabetes and fasting. Similarly, GLUT-4 mRNA and protein markedly decreased in brown adipose tissue in both insulinopenic conditions. 3. Under control conditions, the level of expression of GLUT-4 protein content differed substantially in heart, red and white skeletal muscle. Thus GLUT-4 protein was maximal in heart, and red muscle had a greater GLUT-4 content compared with white muscle. In spite of the large differences in GLUT-4 protein content. GLUT-4 mRNA levels were equivalent in heart and red skeletal muscle. 4. In heart, GLUT-4 mRNA decreased to a greater extent than GLUT-4 protein in response to diabetes and fasting. In contrast, red muscle showed a greater decrease in GLUT-4 protein than in mRNA in response to diabetes or fasting, and in fact no decrease in GLUT-4 mRNA content was detectable in fasting. On the other hand, preparations of white skeletal muscle showed a substantial increase in GLUT-4 mRNA under both insulinopenic conditions, and that was concomitant to either a modest decrease in GLUT-4 protein in diabetes or to no change in fasting. 5. These results indicate that (a) the effects of diabetes and fasting are almost identical and lead to changes in GLUT-4 expression that are tissue-specific, (b) white adipose tissue, brown adipose tissue and heart respond similarly to insulin deficiency by decreasing GLUT-4 mRNA to a larger extent than GLUT-4 protein, and (c) red and white skeletal muscle respond to insulinopenic conditions in a heterogeneous manner which is characterized by enhanced GLUT-4 mRNA/protein ratios.
引用
收藏
页码:765 / 772
页数:8
相关论文
共 51 条
[1]   HINDLIMB MUSCLE FIBER POPULATIONS OF 5 MAMMALS [J].
ARIANO, MA ;
ARMSTRONG, RB ;
EDGERTON, VR .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1973, 21 (01) :51-55
[2]   RESPIRATORY CAPACITY OF WHITE, RED, AND INTERMEDIATE MUSCLE - ADAPTATIVE RESPONSE TO EXERCISE [J].
BALDWIN, KM ;
TERJUNG, RL ;
HOLLOSZY, JO ;
KLINKERFUSS, GH ;
MOLE, PA .
AMERICAN JOURNAL OF PHYSIOLOGY, 1972, 222 (02) :373-+
[3]   DECREASED EXPRESSION OF THE INSULIN-RESPONSIVE GLUCOSE TRANSPORTER IN DIABETES AND FASTING [J].
BERGER, J ;
BISWAS, C ;
VICARIO, PP ;
STROUT, HV ;
SAPERSTEIN, R ;
PILCH, PF .
NATURE, 1989, 340 (6228) :70-72
[4]   GLUCOSE-METABOLISM IN PERFUSED SKELETAL-MUSCLE - EFFECTS OF STARVATION, DIABETES, FATTY-ACIDS, ACETOACETATE, INSULIN AND EXERCISE ON GLUCOSE-UPTAKE AND DISPOSITION [J].
BERGER, M ;
HAGG, SA ;
GOODMAN, MN ;
RUDERMAN, NB .
BIOCHEMICAL JOURNAL, 1976, 158 (02) :191-202
[5]   EFFECTS OF ALTERED GLUCOSE-HOMEOSTASIS ON GLUCOSE TRANSPORTER EXPRESSION IN SKELETAL-MUSCLE OF THE RAT [J].
BOUREY, RE ;
KORANYI, L ;
JAMES, DE ;
MUECKLER, M ;
PERMUTT, MA .
JOURNAL OF CLINICAL INVESTIGATION, 1990, 86 (02) :542-547
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   INSULIN BINDING AND SENSITIVITY IN RAT SKELETAL-MUSCLE - EFFECT OF STARVATION [J].
BRADY, LJ ;
GOODMAN, MN ;
KALISH, FN ;
RUDERMAN, NB .
AMERICAN JOURNAL OF PHYSIOLOGY, 1981, 240 (02) :E184-E190
[8]   DIABETES-INDUCED FUNCTIONAL AND STRUCTURAL-CHANGES IN INSULIN-RECEPTORS FROM RAT SKELETAL-MUSCLE [J].
BURANT, CF ;
TREUTELAAR, MK ;
BUSE, MG .
JOURNAL OF CLINICAL INVESTIGATION, 1986, 77 (01) :260-270
[9]  
CHARRON MJ, 1990, J BIOL CHEM, V265, P7994
[10]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2