Mathematical analysis of HIV/AIDS infection model with Caputo-Fabrizio fractional derivative

被引:33
作者
Bushnaq, Samia [1 ]
Khan, Sajjad Ali [2 ]
Shah, Kamal [2 ]
Zaman, Gul [2 ]
机构
[1] Princess Sumaya Univ Technol, Dept Basic Sci, Amman 11941, Jordan
[2] Univ Malakand, Dept Math, Dir L, Khyber Pakhtunk, Pakistan
来源
COGENT MATHEMATICS & STATISTICS | 2018年 / 5卷 / 01期
关键词
HIV/AIDS model; Caputo-Fabrizio derivative; Sumudu transform; existence and uniqueness;
D O I
10.1080/23311835.2018.1432521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This manuscript is concerned to the existence and stability of HIV/AIDS infection model with fractional order derivative. The corresponding derivative is taken in Caputo-Fabrizio sense, which is a new approach for such type of biological models. With the help of Sumudu transform, some new results are handled. Further for the corresponding results, existence theory and uniqueness for the equilibrium solution are provided via using nonlinear functional analysis and fixed point theory due to Banach.
引用
收藏
页数:12
相关论文
共 13 条
  • [1] Abu Arqub Omar, 2013, Journal of King Saud University Science, V25, P73, DOI 10.1016/j.jksus.2012.01.003
  • [2] Ali N., 2017, COGENT MATH, V12, P1
  • [3] Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel
    Atangana, Abdon
    Jose Nieto, Juan
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (10): : 1 - 7
  • [4] Analysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel
    Atangana, Abdon
    Alkahtani, Badr Saad T.
    [J]. ENTROPY, 2015, 17 (06) : 4439 - 4453
  • [5] A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative
    Baleanu, Dumitru
    Mousalou, Asef
    Rezapour, Shahram
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [6] Stability analysis of an HIV/AIDS epidemic model with treatment
    Cai, Liming
    Li, Xuezhi
    Ghosh, Mini
    Guo, Baozhu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 313 - 323
  • [7] Caputo M., 2016, PROG FRACT DIFFER AP, V2, P1, DOI [10.18576/pfda/020101, DOI 10.18576/pfda/020101, DOI 10.18576/PFDA/020101]
  • [8] Caputo M., 2015, PROG FRACT DIFER APP, V1, P73, DOI DOI 10.12785/PFDA/010201
  • [9] El-Saka H., 2014, J EGYP MATH SOC, V22, P50, DOI DOI 10.1016/J.JOEMS.2013.06.006
  • [10] Losada J., 2015, PROGR FRACT DIFFER A, V1, P87, DOI DOI 10.12785/PFDA/010202