Topic Models: A Tutorial with R

被引:7
作者
Richardson, G. Manning [1 ]
Bowers, Janet [2 ]
Woodill, A. John [3 ]
Barr, Joseph R. [2 ]
Gawron, Jean Mark [4 ]
Levine, Richard A. [2 ]
机构
[1] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] San Diego State Univ, Dept Econ, San Diego, CA 92182 USA
[4] San Diego State Univ, Dept Linguist & Asian Middle Eastern Languages, San Diego, CA 92182 USA
关键词
Probabilistic topic models; latent semantic analysis; microblogging; twitter;
D O I
10.1142/S1793351X14500044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This tutorial presents topic models for organizing and comparing documents. The technique and corresponding discussion focuses on analysis of short text documents, particularly micro-blogs. However, the base topic model and R implementation are generally applicable to text analytics of document databases.
引用
收藏
页码:85 / 98
页数:14
相关论文
共 50 条
  • [31] Topic and sentiment aware microblog summarization for twitter
    Syed Muhammad Ali
    Zeinab Noorian
    Ebrahim Bagheri
    Chen Ding
    Feras Al-Obeidat
    Journal of Intelligent Information Systems, 2020, 54 : 129 - 156
  • [32] Topic and sentiment aware microblog summarization for twitter
    Ali, Syed Muhammad
    Noorian, Zeinab
    Bagheri, Ebrahim
    Ding, Chen
    Al-Obeidat, Feras
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2020, 54 (01) : 129 - 156
  • [33] A Tutorial on Stance Detection
    Kucuk, Dilek
    Can, Fazli
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 1626 - 1628
  • [34] Unified Topic-Based Semantic Models: A Study in Computing the Semantic Relatedness of Geographic Terms
    Sadr, Hossein
    Soleimandarabi, Mojdeh Nazari
    Pedram, Mir Mohsen
    Teshnelab, Mohammad
    2019 5TH INTERNATIONAL CONFERENCE ON WEB RESEARCH (ICWR), 2019, : 134 - 140
  • [35] The Ideal Topic: Interdependence of Topic Interpretability and Other Quality Features in Topic Modelling for Short Texts
    Blekanov, Ivan S.
    Bodrunova, Svetlana S.
    Zhuravleva, Nina
    Smoliarova, Anna
    Tarasov, Nikita
    SOCIAL COMPUTING AND SOCIAL MEDIA. DESIGN, ETHICS, USER BEHAVIOR, AND SOCIAL NETWORK ANALYSIS, SCSM 2020, PT I, 2020, 12194 : 19 - 26
  • [36] Topic evolution based on the probabilistic topic model: a review
    Houkui Zhou
    Huimin Yu
    Roland Hu
    Frontiers of Computer Science, 2017, 11 : 786 - 802
  • [37] Topic evolution based on the probabilistic topic model: a review
    Zhou, Houkui
    Yu, Huimin
    Hu, Roland
    FRONTIERS OF COMPUTER SCIENCE, 2017, 11 (05) : 786 - 802
  • [38] Unsupervised topic discovery in micro-blogging networks
    Vicient, Carlos
    Moreno, Antonio
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (17-18) : 6472 - 6485
  • [39] Combining hidden Markov models and latent semantic analysis for topic segmentation and labeling: Method and clinical application
    Ginter, Filip
    Suominen, Hanna
    Pyysalo, Sampo
    Salakoski, Tapio
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2009, 78 (12) : E1 - E6
  • [40] A Sparse Topic Model for Bursty Topic Discovery in Social Networks
    Shi, Lei
    Du, Junping
    Kou, Feifei
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2020, 17 (05) : 816 - 824