Topic Models: A Tutorial with R

被引:7
|
作者
Richardson, G. Manning [1 ]
Bowers, Janet [2 ]
Woodill, A. John [3 ]
Barr, Joseph R. [2 ]
Gawron, Jean Mark [4 ]
Levine, Richard A. [2 ]
机构
[1] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] San Diego State Univ, Dept Econ, San Diego, CA 92182 USA
[4] San Diego State Univ, Dept Linguist & Asian Middle Eastern Languages, San Diego, CA 92182 USA
关键词
Probabilistic topic models; latent semantic analysis; microblogging; twitter;
D O I
10.1142/S1793351X14500044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This tutorial presents topic models for organizing and comparing documents. The technique and corresponding discussion focuses on analysis of short text documents, particularly micro-blogs. However, the base topic model and R implementation are generally applicable to text analytics of document databases.
引用
收藏
页码:85 / 98
页数:14
相关论文
共 50 条
  • [1] A Tutorial on Probabilistic Topic Models for Text Data Retrieval and Analysis
    Zhai, ChengXiang
    Geigle, Chase
    ACM/SIGIR PROCEEDINGS 2018, 2018, : 1395 - 1397
  • [2] Comparing Twitter and Traditional Media Using Topic Models
    Zhao, Wayne Xin
    Jiang, Jing
    Weng, Jianshu
    He, Jing
    Lim, Ee-Peng
    Yan, Hongfei
    Li, Xiaoming
    ADVANCES IN INFORMATION RETRIEVAL, 2011, 6611 : 338 - +
  • [3] Topic Models for Comparative Summarization
    Campr, Michal
    Jezek, Karel
    TEXT, SPEECH, AND DIALOGUE, TSD 2013, 2013, 8082 : 568 - 574
  • [4] Review of Automatic Labeling for Topic Models
    Ling H.
    Ou S.
    Data Analysis and Knowledge Discovery, 2019, 3 (09) : 16 - 26
  • [5] Probabilistic topic models for sequence data
    Nicola Barbieri
    Giuseppe Manco
    Ettore Ritacco
    Marco Carnuccio
    Antonio Bevacqua
    Machine Learning, 2013, 93 : 5 - 29
  • [6] Probabilistic topic models for sequence data
    Barbieri, Nicola
    Manco, Giuseppe
    Ritacco, Ettore
    Carnuccio, Marco
    Bevacqua, Antonio
    MACHINE LEARNING, 2013, 93 (01) : 5 - 29
  • [7] Finding High-level Topics and Tweet Labeling Using Topic Models
    Samarawickrama, Sameendra
    Karunasekera, Shanika
    Harwood, Aaron
    2015 IEEE 21ST INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2015, : 242 - 249
  • [8] Using Topic Models for Twitter Hashtag Recommendation
    Godin, Frederic
    Slavkovikj, Viktor
    De Neve, Wesley
    Schrauwen, Benjamin
    Van de Walle, Rik
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), 2013, : 593 - 596
  • [9] Combining Thesaurus Knowledge and Probabilistic Topic Models
    Loukachevitch, Natalia
    Nokel, Michael
    Ivanov, Kirill
    ANALYSIS OF IMAGES, SOCIAL NETWORKS AND TEXTS, AIST 2017, 2018, 10716 : 59 - 71
  • [10] Adding Thesaurus Information into Probabilistic Topic Models
    Loukachevitch, Natalia
    Nokel, Michael
    TEXT, SPEECH, AND DIALOGUE, TSD 2017, 2017, 10415 : 210 - 218