GENERALIZATION OF COS PI-RHO-THEOREM

被引:12
作者
BAERNSTEIN, A
机构
[1] SYRACUSE UNIV, DEPT MATH, SYRACUSE, NY 13210 USA
[2] WASHINGTON UNIV, DEPT MATH, ST LOUIS, MO 63130 USA
关键词
D O I
10.2307/1996908
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:181 / 197
页数:17
相关论文
共 17 条
[1]  
[Anonymous], 1962, SELECTED TOPICS CLAS
[2]  
Arima K., 1952, J MATH SOC JAPAN, V4, P62
[3]   PROOF OF EDREIS SPREAD CONJECTURE [J].
BAERNSTEIN, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (02) :277-+
[4]  
BAERNSTEIN A, 1973, P LOND MATH SOC, P26
[5]  
BOAS R., 1954, Entire functions
[6]   ASYMPTOTIC PROPERTIES OF ENTIRE FUNCTIONS EXTREMAL FOR COS PIRHO THEOREM [J].
DRASIN, D ;
SHEA, DF .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (01) :119-&
[7]  
DRASIN R, TO BE PUBLISHED
[8]   DEFICIENCIES OF MEROMORPHIC FUNCTIONS OF FINITE LOWER ORDER [J].
EDREI, A .
DUKE MATHEMATICAL JOURNAL, 1964, 31 (01) :1-&
[9]   A LOCAL FORM OF PHRAGMEN-LINDELOF INDICATOR [J].
EDREI, A .
MATHEMATIKA, 1970, 17 (33) :149-&
[10]   ENTIRE FUNCTIONS WITH BOUNDED MINIMUM MODULUS - SUBHARMONIC FUNCTION ANALOGUES [J].
HEINS, M .
ANNALS OF MATHEMATICS, 1948, 49 (01) :200-213