In Situ Photothermal Response of Single Gold Nanoparticles through Hyperspectral Imaging Anti-Stokes Thermometry

被引:51
作者
Barella, Mariano [1 ]
Violi, Ianina L. [1 ,2 ]
Gargiulo, Julian [3 ]
Martinez, Luciana P. [1 ]
Goschin, Florian [3 ]
Guglielmotti, Victoria [2 ]
Pallarola, Diego [2 ]
Schluecker, Sebastian [4 ,5 ]
Pilo-Pais, Mauricio [6 ]
Acuna, Guillermo P. [6 ]
Maier, Stefan A. [3 ,7 ]
Cortes, Emiliano [3 ]
Stefani, Fernando D. [1 ,8 ]
机构
[1] Consejo Nacl Invest Cient & Tecn CONICET, Ctr Invest Bionanociencias CIBION, RA-1425 Caba, Argentina
[2] UNSAM CONICET, Inst Nanosistemas, RA-1650 San Martin, Argentina
[3] Ludwig Maximilians Univ Munchen, Nanoinst Munich, Fac Phys, Chair Hybrid Nanosyst, D-80799 Munich, Germany
[4] Univ Duisburg Essen, Phys Chem 1, Dept Chem, D-45141 Duisburg, Germany
[5] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, D-45141 Duisburg, Germany
[6] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
[7] Imperial Coll London, Dept Phys, Blackett Lab, London SW7 2AZ, England
[8] Univ Buenos Aires, Dept Fis, Fac Ciencias Exactas & Nat, RA-1428 Caba, Argentina
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
anti-Stokes nanothermometry; optical printing; metal photoluminescence; graphene; plasmonics; metallic nanoparticles; thermoplasmonics; PARTICLES; FORCES;
D O I
10.1021/acsnano.0c06185
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Several fields of applications require a reliable characterization of the photothermal response and heat dissipation of nanoscopic systems, which remains a challenging task for both modeling and experimental measurements. Here, we present an implementation of anti-Stokes thermometry that enables the in situ photothermal characterization of individual nanoparticles (NPs) from a single hyperspectral photoluminescence confocal image. The method is label-free, potentially applicable to any NP with detectable anti-Stokes emission, and does not require any prior information about the NP itself or the surrounding media. With it, we first studied the photothermal response of spherical gold NPs of different sizes on glass substrates, immersed in water, and found that heat dissipation is mainly dominated by the water for NPs larger than 50 nm. Then, the role of the substrate was studied by comparing the photothermal response of 80 nm gold NPs on glass with sapphire and graphene, two materials with high thermal conductivity. For a given irradiance level, the NPs reach temperatures 18% lower on sapphire and 24% higher on graphene than on bare glass. The fact that the presence of a highly conductive material such as graphene leads to a poorer thermal dissipation demonstrates that interfacial thermal resistances play a very significant role in nanoscopic systems and emphasize the need for in situ experimental thermometry techniques. The developed method will allow addressing several open questions about the role of temperature in plasmon-assisted applications, especially ones where NPs of arbitrary shapes are present in complex matrixes and environments.
引用
收藏
页码:2458 / 2467
页数:10
相关论文
共 68 条
[1]   Gold-Nanoparticle-Assisted Plasmonic Photothermal Therapy Advances Toward Clinical Application [J].
Ali, Moustafa R. K. ;
Wu, Yue ;
El-Sayed, Mostafa A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (25) :15375-15393
[2]   Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy [J].
Baffou, G. ;
Kreuzer, M. P. ;
Kulzer, F. ;
Quidant, R. .
OPTICS EXPRESS, 2009, 17 (05) :3291-3298
[3]  
Baffou G., 2017, Thermoplasmonics: Heating Metal Nanoparticles Using Light, P36
[4]   Applications and challenges of thermoplasmonics [J].
Baffou, Guillaume ;
Cichos, Frank ;
Quidant, Romain .
NATURE MATERIALS, 2020, 19 (09) :946-958
[5]   Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics [J].
Baffou, Guillaume ;
Bordacchini, Ivan ;
Baldi, Andrea ;
Quidant, Romain .
LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
[6]   Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis [J].
Baffou, Guillaume ;
Bon, Pierre ;
Savatier, Julien ;
Polleux, Julien ;
Zhu, Min ;
Merlin, Marine ;
Rigneault, Herve ;
Monneret, Serge .
ACS NANO, 2012, 6 (03) :2452-2458
[7]   Vibrational and electronic excitations in gold nanocrystals [J].
Bayle, Maxime ;
Combe, Nicolas ;
Sangeetha, Neralagatta M. ;
Viau, Guillaume ;
Carles, Robert .
NANOSCALE, 2014, 6 (15) :9157-9165
[8]   Thermometry at the nanoscale [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
NANOSCALE, 2012, 4 (16) :4799-4829
[9]   Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications [J].
Butet, Jeremy ;
Brevet, Pierre-Francois ;
Martin, Olivier J. F. .
ACS NANO, 2015, 9 (11) :10545-10562
[10]   Anti-Stokes Emission from Hot Carriers in Gold Nanorods [J].
Cai, Yi-Yu ;
Sung, Eric ;
Zhang, Runmin ;
Tauzin, Lawrence J. ;
Liu, Jun G. ;
Ostovar, Behnaz ;
Zhang, Yue ;
Chang, Wei-Shun ;
Nordlander, Peter ;
Link, Stephan .
NANO LETTERS, 2019, 19 (02) :1067-1073