ASYMPTOTIC ERROR EXPANSION FOR THE NYSTROM METHOD FOR NONLINEAR FREDHOLM INTEGRAL-EQUATIONS OF THE 2ND KIND

被引:11
作者
HAN, GQ [1 ]
机构
[1] S CHINA UNIV TECHNOL,DEPT COMP SCI,CANTON,PEOPLES R CHINA
来源
BIT | 1994年 / 34卷 / 02期
关键词
AMS subject classification: 65R20; error expansion; Fredholm integral equation; Richardson extrapolation;
D O I
10.1007/BF01955872
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper the asymptotic error expansion for the Nystrom method for one-dimensional nonlinear Fredholm integral equations of the second kind is considered. We show that the Nystrom solution admits an error expansion in powers of the step-size h. Thus Richardson's extrapolation can be performed on the solution, and this will greatly increase the accuracy of the numerical solution.
引用
收藏
页码:254 / 261
页数:8
相关论文
共 12 条
[1]  
ANSELONE PM, 1971, COLLECTIVELY COMPACT
[2]   NUMERICAL EVALUATION OF FIXED-POINTS FOR COMPLETELY CONTINUOUS OPERATORS [J].
ATKINSON, KE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :799-807
[3]  
ATKINSON KE, 1976, SURVEY NUMERICAL MET
[4]  
Baker C.T.H., 1977, NUMERICAL TREATMENT
[5]  
DELVES LM, 1985, COMP METHODS INTEGRA
[6]   EXTRAPOLATION OF THE ITERATD-COLLOCATION METHOD FOR INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
LIN, Q ;
SLOAN, IH ;
XIE, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1535-1541
[7]  
Marchuk G I., 2012, DIFFERENCE METHODS T, DOI [10.1007/BF00046588, DOI 10.1007/BF00046588]
[9]   APPROXIMATIONS TO NONLINEAR OPERATOR EQUATIONS AND NEWTONS METHOD [J].
MOORE, RH .
NUMERISCHE MATHEMATIK, 1968, 12 (01) :23-&
[10]   COLLECTION METHOD FOR NUMERICAL SOLUTION OF INTEGRAL-EQUATIONS [J].
PRENTER, PM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) :570-581