SLOSHING;
NUMERICAL ANALYSIS;
FBR TYPE REACTORS;
REACTOR COOLING SYSTEMS;
POTENTIAL FLOW;
BOUNDARY ELEMENT METHOD;
NUMERICAL SIMULATION;
D O I:
10.1080/18811248.1990.9731304
中图分类号:
TL [原子能技术];
O571 [原子核物理学];
学科分类号:
0827 ;
082701 ;
摘要:
A three-dimensional analysis method for sloshing behavior of fast breeder reactor (FBRs) is developed. The method treats the coolant in a reactor vessel as a potential flow with moving liquid surfaces. The Laplace equation of a velocity potential is solved by a boundary element method with its boundary condition described by a Bernoulli equation. The vibration test results of a rectangular water pool are calculated by the method. Then, the method is applied to analysis of sloshing behavior of uni- and multi-vessel type FBRs. The latter consists of vessels for the core, heat exchangers and pumps. These vessels are connected by piping. In the case of the uni-vessel type FBR, heat exchangers and pumps are placed in the reactor vessel. The characteristics of sloshing behavior of both the reactors are presented.