MYOGENIN INDUCES THE MYOCYTE-SPECIFIC ENHANCER BINDING-FACTOR MEF-2 INDEPENDENTLY OF OTHER MUSCLE-SPECIFIC GENE-PRODUCTS

被引:252
作者
CSERJESI, P [1 ]
OLSON, EN [1 ]
机构
[1] UNIV TEXAS,MD ANDERSON CANC CTR,DEPT BIOCHEM & MOLEC BIOL,1515 HOLCOMBE BLVD,HOUSTON,TX 77030
关键词
D O I
10.1128/MCB.11.10.4854
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The myocyte-specific enhancer-binding factor MEF-2 is a nuclear factor that interacts with a conserved element in the muscle creatine kinase and myosin light-chain 1/3 enhancers (L. A. Gossett, D. J. Kelvin, E. A. Sternberg, and E. N. Olson, Mol. Cell. Biol. 9:5022-5033, 1989). We show in this study that MEF-2 is regulated by the myogenic regulatory factor myogenin and that mitogenic signals block this regulatory interaction. Induction of MEF-2 by myogenin occurs in transfected 10T1/2 cells that have been converted to myoblasts by myogenin, as well as in CV-1 kidney cells that do not activate the myogenic program in response to myogenin. Through mutagenesis of the MEF-2 site, we further defined the binding site requirements for MEF-2 and identified potential MEF-2 sites within numerous muscle-specific regulatory regions. The MEF-2 site was also found to bind a ubiquitous nuclear factor whose binding specificity was similar to but distinct from that of MEF-2. Our results reveal that MEF-2 is controlled, either directly or indirectly, by a myogenin-dependent regulatory pathway and suggest that growth factor signals suppress MEF-2 expression through repression of myogenin expression or activity. The ability of myogenin to induce MEF-2 activity in CV-1 cells, which do not activate downstream genes associated with terminal differentiation, also demonstrates that myogenin retains limited function within cell types that are nonpermissive for myogenesis and suggests that MEF-2 is regulated independently of other muscle-specific genes.
引用
收藏
页码:4854 / 4862
页数:9
相关论文
共 70 条
[1]   MULTIPLE POSITIVE AND NEGATIVE 5' REGULATORY ELEMENTS CONTROL THE CELL-TYPE-SPECIFIC EXPRESSION OF THE EMBRYONIC SKELETAL MYOSIN HEAVY-CHAIN GENE [J].
BOUVAGNET, PF ;
STREHLER, EE ;
WHITE, GE ;
STREHLERPAGE, MA ;
NADALGINARD, B ;
MAHDAVI, V .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (12) :4377-4389
[2]   PROMOTER UPSTREAM ELEMENTS OF THE CHICKEN CARDIAC MYOSIN LIGHT-CHAIN 2-A GENE INTERACT WITH TRANS-ACTING REGULATORY FACTORS FOR MUSCLE-SPECIFIC TRANSCRIPTION [J].
BRAUN, T ;
TANNICH, E ;
BUSCHHAUSENDENKER, G ;
ARNOLD, HH .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (06) :2513-2525
[3]   MYF-6, A NEW MEMBER OF THE HUMAN GENE FAMILY OF MYOGENIC DETERMINATION FACTORS - EVIDENCE FOR A GENE-CLUSTER ON CHROMOSOME-12 [J].
BRAUN, T ;
BOBER, E ;
WINTER, B ;
ROSENTHAL, N ;
ARNOLD, HH .
EMBO JOURNAL, 1990, 9 (03) :821-831
[4]   DIFFERENTIAL EXPRESSION OF MYOGENIC DETERMINATION GENES IN MUSCLE-CELLS - POSSIBLE AUTOACTIVATION BY THE MYF GENE-PRODUCTS [J].
BRAUN, T ;
BOBER, E ;
BUSCHHAUSENDENKER, G ;
KOTZ, S ;
GRZESCHIK, KH ;
ARNOLD, HH .
EMBO JOURNAL, 1989, 8 (12) :3617-3625
[5]   A NOVEL HUMAN-MUSCLE FACTOR RELATED TO BUT DISTINCT FROM MYOD1 INDUCES MYOGENIC CONVERSION IN 10T1/2 FIBROBLASTS [J].
BRAUN, T ;
BUSCHHAUSENDENKER, G ;
BOBER, E ;
TANNICH, E ;
ARNOLD, HH .
EMBO JOURNAL, 1989, 8 (03) :701-709
[6]   TRANSFORMING GROWTH-FACTOR-BETA REPRESSES THE ACTIONS OF MYOGENIN THROUGH A MECHANISM INDEPENDENT OF DNA-BINDING [J].
BRENNAN, TJ ;
EDMONDSON, DG ;
LI, L ;
OLSON, EN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (09) :3822-3826
[7]   MYOGENIN RESIDES IN THE NUCLEUS AND ACQUIRES HIGH-AFFINITY FOR A CONSERVED ENHANCER ELEMENT ON HETERODIMERIZATION [J].
BRENNAN, TJ ;
OLSON, EN .
GENES & DEVELOPMENT, 1990, 4 (04) :582-595
[8]   ABERRANT REGULATION OF MYOD1 CONTRIBUTES TO THE PARTIALLY DEFECTIVE MYOGENIC PHENOTYPE OF BC3H1 CELLS [J].
BRENNAN, TJ ;
EDMONDSON, DG ;
OLSON, EN .
JOURNAL OF CELL BIOLOGY, 1990, 110 (04) :929-937
[9]   MUTAGENESIS OF THE MYOGENIN BASIC REGION IDENTIFIES AN ANCIENT PROTEIN MOTIF CRITICAL FOR ACTIVATION OF MYOGENESIS [J].
BRENNAN, TJ ;
CHAKRABORTY, T ;
OLSON, EN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (13) :5675-5679
[10]   IDENTIFICATION OF A MYOCYTE NUCLEAR FACTOR THAT BINDS TO THE MUSCLE-SPECIFIC ENHANCER OF THE MOUSE MUSCLE CREATINE-KINASE GENE [J].
BUSKIN, JN ;
HAUSCHKA, SD .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (06) :2627-2640