SOLUTION OF MAXWELLS EQUATIONS IN KERR GEOMETRY

被引:27
作者
CHANDRASEKHAR, S [1 ]
机构
[1] UNIV CHICAGO,CHICAGO,IL 60637
来源
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1976年 / 349卷 / 1656期
关键词
D O I
10.1098/rspa.1976.0056
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:1 / 8
页数:8
相关论文
共 12 条
[1]   MAXIMAL ANALYTIC EXTENSION OF KERR METRIC [J].
BOYER, RH ;
LINDQUIST, RW .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (02) :265-+
[2]   VECTOR POTENTIAL AND METRIC PERTURBATIONS OF A ROTATING BLACK-HOLE [J].
CHRZANOWSKI, PL .
PHYSICAL REVIEW D, 1975, 11 (08) :2042-2062
[3]   ELECTROMAGNETIC-FIELDS IN CURVED SPACES - CONSTRUCTIVE PROCEDURE [J].
COHEN, JM ;
KEGELES, LS .
PHYSICAL REVIEW D, 1974, 10 (04) :1070-1084
[4]   TYPE D VACUUM METRICS [J].
KINNERSLEY, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (07) :1195-+
[5]   AN APPROACH TO GRAVITATIONAL RADIATION BY A METHOD OF SPIN COEFFICIENTS [J].
NEWMAN, E ;
PENROSE, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (03) :566-&
[6]  
STAROBIN.AA, 1973, ZH EKSP TEOR FIZ+, V65, P3
[7]  
STAROBIN.AA, 1973, ZH EKSP TEOR FIZ+, V64, P48
[8]  
Starobinskii A. A., 1974, SOV PHYS JETP, V38, P1
[9]  
STAROBINSKY AA, 1974, SOV PHYS JETP, V37, P28
[10]  
TEUKOLSKY S, 1972, PHYS REV LETT, V29, P114