MORPHOLOGICAL FILTERING - AN OVERVIEW

被引:121
作者
SERRA, J
机构
[1] Centre de Morphologie Mathématique, 77305 Fontainebleau, 35, Rue Saint Honoré
关键词
MORPHOLOGICAL FILTERING; MORPHOLOGICAL VERSUS LINEAR; OPTICAL FILTERING;
D O I
10.1016/0165-1684(94)90052-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is an overview on the concept of morphological filtering. Starting from openings and the associated granulometries, we discuss the notion and construction of morphological filters. Then the major differences between the 'morphological' and the 'linear' approaches are highlighted. Finally, the problem of optimal morphological filtering is presented.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 30 条
  • [1] Astola, Koskinen, Neuvo, Statistical properties of discrete morphological filters, Mathematical Morphology in Image Processing, pp. 93-119, (1992)
  • [2] Burger, Gandillot, Treillard, Transformations morphologiques sur un graphe, Tech. Report, (1982)
  • [3] Crespo, Serra, Schafer, Image segmentation using connected filters, Workshop in Mathematical Morphology, (1993)
  • [4] Dougherty, Mathematical Morphology in Image Processing, (1992)
  • [5] Dougherty, Loce, Efficient design strategies for the optimal binary digital morphological filter probabilities constraints and structuring element libraries, Mathematical Morphology in Image Processing, pp. 43-92, (1992)
  • [6] Grimaud, La géodésie numérique en Morphologie Mathématique. Application à la détection automatique des micro-calcifications, Thesis, (1991)
  • [7] Haralick, Sternberg, Zhuang, Image analysis using mathematical morphology, IEEE Pattern Anal. Mach. Intell., 9, pp. 532-550, (1987)
  • [8] Heijmans, Theoretical aspects of grey-level Morphology, IEEE Trans. Pattern Ana. Mach. Intell., 13, pp. 568-592, (1991)
  • [9] Maragos, A representation theory for morphological image and signal processing, IEEE Trans. Pattern Anal. Mach. Intell., 11, pp. 299-586, (1989)
  • [10] Maragos, Schafer, Morphological filter — Part I Their set-theoretic analysis and relations to linear shift-invariant filters, IEEE Transactions on Acoustics, Speech, and Signal Processing, 35, pp. 1153-1169, (1967)