VARIABLE BANDWIDTH KERNEL ESTIMATORS OF REGRESSION-CURVES

被引:94
作者
MULLER, HG [1 ]
STADTMULLER, U [1 ]
机构
[1] UNIV ULM,MATH ABT 1,D-7900 ULM,FED REP GER
关键词
D O I
10.1214/aos/1176350260
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:182 / 201
页数:20
相关论文
共 22 条
[1]   ON BANDWIDTH VARIATION IN KERNEL ESTIMATES - A SQUARE ROOT LAW [J].
ABRAMSON, IS .
ANNALS OF STATISTICS, 1982, 10 (04) :1217-1223
[2]   ARBITRARINESS OF THE PILOT ESTIMATOR IN ADAPTIVE KERNEL METHODS [J].
ABRAMSON, IS .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (04) :562-567
[3]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[4]   VARIABLE KERNEL ESTIMATES OF MULTIVARIATE DENSITIES [J].
BREIMAN, L ;
MEISEL, W ;
PURCELL, E .
TECHNOMETRICS, 1977, 19 (02) :135-144
[5]   ADAPTING FOR HETEROSCEDASTICITY IN LINEAR-MODELS [J].
CARROLL, RJ .
ANNALS OF STATISTICS, 1982, 10 (04) :1224-1233
[6]   NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION [J].
CHENG, KF ;
LIN, PE .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02) :223-233
[7]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[8]   NONPARAMETRIC REGRESSION-ANALYSIS OF GROWTH-CURVES [J].
GASSER, T ;
MULLER, HG ;
KOHLER, W ;
MOLINARI, L ;
PRADER, A .
ANNALS OF STATISTICS, 1984, 12 (01) :210-229
[9]  
GASSER T, 1984, SCAND J STAT, V11, P171
[10]   WEAK-CONVERGENCE AND EFFICIENT DENSITY-ESTIMATION AT A POINT [J].
KRIEGER, AM ;
PICKANDS, J .
ANNALS OF STATISTICS, 1981, 9 (05) :1066-1078