OPTICAL AND HIGH-TEMPERATURE ELECTRICAL PROPERTIES OF PURE AND Sr-MODIFIED CdS NANOCRYSTALS

被引:1
作者
Firdous, Arfat [1 ,2 ]
Ahmad, M. M. [1 ]
机构
[1] Natl Inst Technol Hazratbal, Dept Phys, Srinagar 190006, Jammu & Kashmir, India
[2] Govt Degree Coll, Dept Higher Educ, Dept Phys, Handwara, Jammu & Kashmir, India
关键词
CdS nanocrystals; doping; optical properties; electrical properties;
D O I
10.1142/S0219581X12500093
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanoparticles of CdS-and Sr-doped CdS were synthesized through chemical precipitation method using a high-boiling solvent. X-ray diffraction confirms the nanocrystallinity of the prepared nanostructures. The mean crystal size obtained by full width half maxima analysis is 3.34 nm for CdS, 3.39 nm for CdS: Sr (2mM) and 3.41 nm for CdS: Sr (4 mM). The optical absorption analysis conducted in UV-vis range 200-900 nm reveals the transparency of these nanocrystals in the entire visible range but not in ultraviolet range. The results based on optical analysis yield bandgap values as 2.63 eV for CdS, 2.58 eV for CdS: Sr (2mM) and 2.52 eV for CdS: Sr (4mM) nanoparticles. This implies that pure CdS-and Sr-doped CdS are blue shifted with respect to the bulk CdS (2.42 eV), however Strontium modified CdS nanocrystals are red shifted with respect to pure CdS nanocrystals. The electrical conductivity data reveals semi-conducting behavior of both pure CdS-and Sr-doped CdS nanocrystals. Fitting of conductivity data in Mott's variable range hopping model shows that Strontium doping in CdS reduces gap parameters from 2.81 to 2.59 eV.
引用
收藏
页数:6
相关论文
共 23 条
[1]   Electroluminescence in thin solid films of closely packed CdS nanocrystals [J].
Artemyev, MV ;
Sperling, V ;
Woggon, U .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (10) :6975-6977
[2]   Electron spin and optical coherence in semiconductors [J].
Awschalom, DD ;
Kikkawa, JM .
PHYSICS TODAY, 1999, 52 (06) :33-38
[3]   Energy structure and fluorescence of Eu2+ in ZnS:Eu nanoparticles [J].
Chen, W ;
Malm, JO ;
Zwiller, V ;
Huang, YN ;
Liu, SM ;
Wallenberg, R ;
Bovin, JO ;
Samuelson, L .
PHYSICAL REVIEW B, 2000, 61 (16) :11021-11024
[4]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[5]   Synthesis and photoluminescence properties of ZnMnS nanobelts [J].
Geng, BY ;
Zhang, LD ;
Wang, GZ ;
Xie, T ;
Zhang, YG ;
Meng, GW .
APPLIED PHYSICS LETTERS, 2004, 84 (12) :2157-2159
[6]   Properties of zinc sulphide nanoparticles stabilized in silica [J].
Hebalkar, N ;
Lobo, A ;
Sainkar, SR ;
Pradhan, SD ;
Vogel, W ;
Urban, J ;
Kulkarni, SK .
JOURNAL OF MATERIALS SCIENCE, 2001, 36 (18) :4377-4384
[7]   Photoluminescence properties of impurity-doped ZnS nanocrystals fabricated by sequential ion implantation [J].
Ishizumi, A ;
White, CW ;
Kanemitsu, Y .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 26 (1-4) :24-27
[8]   Structural, optical and photoluminescence properties of ZnS: Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect [J].
Jayanthi, K. ;
Chawla, S. ;
Chander, H. ;
Haranath, D. .
CRYSTAL RESEARCH AND TECHNOLOGY, 2007, 42 (10) :976-982
[9]   QUANTUM-SIZE EFFECTS OF INTERACTING ELECTRONS AND HOLES IN SEMICONDUCTOR MICROCRYSTALS WITH SPHERICAL SHAPE [J].
KAYANUMA, Y .
PHYSICAL REVIEW B, 1988, 38 (14) :9797-9805
[10]   Photoluminescence of Eu2+ doped ZnS nanocrystals [J].
Liu, SM ;
Guo, HQ ;
Zhang, ZH ;
Liu, FQ ;
Wang, ZG .
CHINESE PHYSICS LETTERS, 2000, 17 (08) :609-611