2-DIMENSIONAL ANALOG TO METHOD OF BISECTIONS FOR SOLVING NONLINEAR EQUATIONS

被引:9
作者
HARVEY, C
STENGER, F
机构
[1] DICKINSON COLL,CARLISLE,PA 17013
[2] UNIV UTAH,SALT LAKE CITY,UT
关键词
D O I
10.1090/qam/455361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-dimensional method is developed for obtaining an approximate solution of the system of equations F(X) equals F(x,y) equals (f(x,y), g(x,y)) equals theta equals (0,0) which resembles the one-dimensional method of bisections.
引用
收藏
页码:351 / 368
页数:18
相关论文
共 13 条
[1]   ON KANTOROVICH HYPOTHESIS FOR NEWTONS METHOD [J].
DENNIS, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1969, 6 (03) :493-&
[2]  
EIGER A, TO BE PUBLISHED
[3]  
GOURSAT E, COURSE MATHEMATICAL, V1
[4]  
KINCAID WM, 1961, Q APPL MATH, V18, P313
[5]  
Kuester J. L., 1973, OPTIMIZATION TECHNIQ, P368
[6]  
Mawhin Jean, 1969, B SOT ROY SCI LIEGE, V38, P308
[7]  
Ortega J.M., 1970, ITERATIVE SOLUTIONS
[8]  
Ostrowski A.M., 1960, SOLUTION EQUATION SY
[9]  
PAVIANI DA, 1968, THESIS U TEXAS