Line defects in solid continua and point particles in (2+1)-dimensional gravity

被引:15
作者
Kohler, C
机构
[1] Fachrichtung Theoretische Physik, Universität des Saarlandes, 66041 Saarbrücken
关键词
D O I
10.1088/0264-9381/12/12/014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Solutions of a topological gauge theory of the group GL(3, R) x T-3 are identified with geometries of rectilinear topological defects in solid continua. The defect solutions are classified by isolated singularities of holomorphic functions and correspond to disclinations and dislocations, both of planar and screw type. Dislocations are represented as dipoles of disclinations. The interrelationship of the defect solutions with geometries of elementary particles in (2 + 1)-dimensional gravity is discussed.
引用
收藏
页码:2977 / 2993
页数:17
相关论文
共 27 条
[1]   POSSIBLE KINEMATICS [J].
BACRY, H ;
LEVYLEBL.JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (10) :1605-&
[2]   STATIONARY SOLUTIONS IN 3-DIMENSIONAL GENERAL-RELATIVITY [J].
CLEMENT, G .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1985, 24 (03) :267-275
[3]   GEOMETRICAL-SETTING OF GAUGE-THEORIES OF THE YANG-MILLS TYPE [J].
DANIEL, M ;
VIALLET, CM .
REVIEWS OF MODERN PHYSICS, 1980, 52 (01) :175-197
[4]   3-DIMENSIONAL EINSTEIN GRAVITY - DYNAMICS OF FLAT SPACE [J].
DESER, S ;
JACKIW, R ;
THOOFT, G .
ANNALS OF PHYSICS, 1984, 152 (01) :220-235
[5]  
EGUCHI T, 1980, PHYS REP, V66, P213, DOI 10.1016/0370-1573(80)90130-1
[6]   SPINNING STRINGS AND COSMIC DISLOCATIONS [J].
GALTSOV, DV ;
LETELIER, PS .
PHYSICAL REVIEW D, 1993, 47 (10) :4273-4276
[7]   EINSTEIN THEORY IN A 3-DIMENSIONAL SPACE-TIME [J].
GIDDINGS, S ;
ABBOTT, J ;
KUCHAR, K .
GENERAL RELATIVITY AND GRAVITATION, 1984, 16 (08) :751-775
[8]  
GOTT JR, 1984, GEN RELAT GRAVIT, V16, P243, DOI 10.1007/BF00762539
[9]  
HEHL FW, 1976, Z NATURFORSCH A, V31, P823
[10]   HYPERMOMENTUM IN GENERAL RELATIVITY .2. GEOMETRY OF SPACETIME [J].
HEHL, FW ;
KERLICK, GD ;
HEYDE, PVD .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1976, 31 (06) :524-527