INTEGRATORS FOR LIE-POISSON DYNAMIC-SYSTEMS

被引:51
|
作者
CHANNELL, PJ [1 ]
SCOVEL, JC [1 ]
机构
[1] UNIV CALIF LOS ALAMOS SCI LAB,COMP RES GRP,LOS ALAMOS,NM 87545
来源
PHYSICA D | 1991年 / 50卷 / 01期
关键词
D O I
10.1016/0167-2789(91)90081-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We reformulate the Ge-Marsden (1988) Lie-Poisson integration algorithm in terms of algebra variables alone and show how to implement it for regular quadratic Lie algebras to arbitrary order and for arbitrary Lie algebras to first order. We also describe two generalizations of Ruth's method (1983) that can be used to generate very fast algorithms.
引用
收藏
页码:80 / 88
页数:9
相关论文
共 50 条
  • [1] SPLITTING INTEGRATORS FOR STOCHASTIC LIE-POISSON SYSTEMS
    Brehier, Charles-Edouard
    Cohen, David
    Jahnke, Tobias
    MATHEMATICS OF COMPUTATION, 2023, 92 (343) : 2167 - 2216
  • [2] LIE-POISSON HAMILTON-JACOBI THEORY AND LIE-POISSON INTEGRATORS
    ZHONG, G
    MARSDEN, JE
    PHYSICS LETTERS A, 1988, 133 (03) : 134 - 139
  • [3] Casimir preserving stochastic Lie-Poisson integrators
    Luesink, Erwin
    Ephrati, Sagy
    Cifani, Paolo
    Geurts, Bernard
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [4] Lie-Poisson integrators: A Hamiltonian, variational approach
    Ma, Zhanhua
    Rowley, Clarence W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (13) : 1609 - 1644
  • [5] Poisson integrators for Lie-Poisson structures on R3
    Song, Lina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
  • [6] LIE-POISSON NUMERICAL METHOD FOR A CLASS OF STOCHASTIC LIE-POISSON SYSTEMS
    Liu, Qianqian
    Wang, Lijin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (01) : 104 - 119
  • [7] Collective Lie-Poisson integrators on R3
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) : 546 - 560
  • [8] LIE-POISSON INTEGRATORS FOR A RIGID SATELLITE ON A CIRCULAR ORBIT
    Aydin, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2011, 1 (02): : 150 - 161
  • [9] ELEMENTARY CONSTRUCTION OF HIGHER-ORDER LIE-POISSON INTEGRATORS
    BENZEL, S
    GE, Z
    SCOVEL, C
    PHYSICS LETTERS A, 1993, 174 (03) : 229 - 232
  • [10] CLEBSCH CANONIZATION OF LIE-POISSON SYSTEMS
    Jayawardana, Buddhika
    Morrison, Philip
    Ohsawa, Tomoki
    JOURNAL OF GEOMETRIC MECHANICS, 2022, 14 (04) : 635 - 658