APPROXIMATION OF SPECTRUM OF A NON-COMPACT OPERATOR GIVEN BY MHD STABILITY OF A PLASMA

被引:33
作者
RAPPAZ, J [1 ]
机构
[1] ECOLE POLYTECH FED LAUSANNE,DEPT MATH,CH-1007 LAUSANNE,SWITZERLAND
关键词
D O I
10.1007/BF01403854
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:15 / 24
页数:10
相关论文
共 12 条
[1]   NEW FINITE-ELEMENT APPROACH TO NORMAL MODE ANALYSIS IN MAGNETOHYDRODYNAMICS [J].
APPERT, K ;
BERGER, D ;
GRUBER, R ;
RAPPAZ, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 18 (03) :284-299
[2]   EIGENMODES OF CYLINDRICAL PLASMA USING FINITE-ELEMENT METHOD [J].
APPERT, K ;
BERGER, D ;
GRUBER, R ;
TROYON, F .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1974, 25 (02) :229-240
[3]  
BABUSKA I, 1972, SURVEY LECTURES MATH
[4]  
BRAMBLE JH, 1972, APPROXIMATION STEKLO
[5]  
BRAMBLE JH, 1972, MCR1232 TECH SUM REP
[6]   CONVERGENCE OF APPROXIMATION METHODS TO COMPUTE EIGENELEMENTS OF LINEAR OPERATIONS [J].
CHATELIN, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :939-948
[7]  
GRUBER R, 1976, THESIS EPFL
[8]  
Kato T., 1966, PERTURBATION THEORY, V132, P396
[9]  
RAPPAZ J, 1976, THESIS EPFL
[10]  
RIESZ F, 1972, LECON ANALYSE FONCTI