THE DIAMETER CONJECTURE FOR QUASI-CONFORMAL MAPS IS TRUE IN-SPACE

被引:2
作者
HEINONEN, J
机构
关键词
D O I
10.2307/2160981
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The diameter conjecture for quasiconformal maps is a natural generalization of the Hayman-Wu theorem on level sets of a univalent function. Astala, Fernandez, and Rohde recently disproved this conjecture in the plane. Here we show it is true in space.
引用
收藏
页码:1709 / 1718
页数:10
相关论文
共 20 条
[1]  
ASTALA K, 1993, U MATH J, V42, P1077
[2]   HARMONIC MEASURE AND ARCLENGTH [J].
BISHOP, CJ ;
JONES, PW .
ANNALS OF MATHEMATICS, 1990, 132 (03) :511-547
[3]  
Falconer KJ., 1985, GEOMETRY FRACTAL SET, DOI 10.1017/CBO9780511623738
[4]   LENGTH OF CURVES UNDER CONFORMAL-MAPPINGS [J].
FERNANDEZ, JL ;
HAMILTON, DH .
COMMENTARII MATHEMATICI HELVETICI, 1987, 62 (01) :122-134
[5]  
FERNANDEZ JL, 1989, J ANAL MATH, V52, P117
[6]   CONFORMALLY INVARIANT LENGTH SUMS [J].
GARNETT, JB ;
GEHRING, FW ;
JONES, PW .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (06) :809-829
[7]  
Gehring F. W., 1965, ACTA MATH, V114, P1
[8]   UNIFORM DOMAINS AND THE QUASI-HYPERBOLIC METRIC [J].
GEHRING, FW ;
OSGOOD, BG .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 :50-74
[9]  
GEHRING FW, 1965, J ANAL MATH, V0014, P00171, DOI DOI 10.1007/BF02806386
[10]   JOHN DISKS AND EXTENSION OF MAPS [J].
GHAMSARI, M ;
NAKKI, R ;
VAISALA, J .
MONATSHEFTE FUR MATHEMATIK, 1994, 117 (1-2) :63-94