CONNECTIVITY OF TENSOR PRODUCT OF GRAPHS

被引:2
作者
Paulraja, P. [1 ]
Agnes, V. Sheeba [1 ]
机构
[1] Annamalai Univ, Dept Math, Annamalainagar 608002, Tamil Nadu, India
关键词
Tensor product; connectivity;
D O I
10.1142/S1793830913500237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we determine the connectivity of G x K-r0, (r1,...,) (rn- 1), where x denotes the tensor product of graphs and K-r0, (r1,..., rn- 1) denotes the complete n-partite graph with 1 <= r0 <= r1 <= ... <= rn-1, Sigma(n- 3)(j= 0) rj, r(n-2), r = Sigma(n-1)(j=0) <= r/2 and n >= 3. The main result of this paper deduces the main result of the paper appeared in Discrete Math. 311 (2011) 2563- 2565 as a corollary.
引用
收藏
页数:10
相关论文
共 13 条
[1]  
Bondy J.A., 2008, GRADUATE TEXTS MATH
[2]  
Bresar B, 2008, AUSTRALAS J COMB, V41, P45
[3]   On edge connectivity of direct products of graphs [J].
Cao, Xiang-Lan ;
Brglez, Spela ;
Spacapan, Simon ;
Vumar, Elkin .
INFORMATION PROCESSING LETTERS, 2011, 111 (18) :899-902
[4]   A note on the connectivity of Kronecker products of graphs [J].
Guji, Raxida ;
Vumar, Elkin .
APPLIED MATHEMATICS LETTERS, 2009, 22 (09) :1360-1363
[5]  
Hammack R., 2011, HDB PRODUCT GRAPHS, V2nd
[6]   Vertex vulnerability parameters of Kronecker products of complete graphs [J].
Mamut, Aygul ;
Vumar, Elkin .
INFORMATION PROCESSING LETTERS, 2008, 106 (06) :258-262
[7]  
Paulraja P., 2013, OPUSCULA MA IN PRESS, V33
[8]  
Ranganathan, 2012, TXB GRAPH THEORY, DOI 10.1007/978-1-4614-4529-6
[9]   On the Edge Connectivity of Direct Products with Dense Graphs [J].
Wang, Wei ;
Yan, Zhidan .
GRAPHS AND COMBINATORICS, 2013, 29 (05) :1569-1575
[10]   Connectivity of Kronecker products by K2 [J].
Wang, Wei ;
Yan, Zhidan .
APPLIED MATHEMATICS LETTERS, 2012, 25 (02) :172-174