Categorical Data Clustering with Automatic Selection of Cluster Number

被引:9
|
作者
Liao, Hai-Yong [1 ,2 ]
Ng, Michael K. [1 ,2 ]
机构
[1] Hong Kong Baptist Univ, Ctr Math Imaging & Vis, Kowloon Tong, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
关键词
Categorial data; Clustering; Penalty; Regularization parameter;
D O I
10.1007/s12543-009-0001-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the problem of determining the number of clusters in the k-modes based categorical data clustering process. We propose a new categorical data clustering algorithm with automatic selection of k. The new algorithm extends the k-modes clustering algorithm by introducing a penalty term to the objective function to make more clusters compete for objects. In the new objective function, we employ a regularization parameter to control the number of clusters in a clustering process. Instead of finding k directly, we choose a suitable value of regularization parameter such that the corresponding clustering result is the most stable one among all the generated clustering results. Experimental results on synthetic data sets and the real data sets are used to demonstrate the effectiveness of the proposed algorithm.
引用
收藏
页码:5 / 25
页数:21
相关论文
共 50 条
  • [21] A SCALABLE CLUSTERING METHOD FOR CATEGORICAL SEQUENCE DATA
    Oh, Seung-Joon
    Kim, Jae-Yearn
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2005, 2 (02) : 167 - 180
  • [22] Kernel Subspace Clustering Algorithm for Categorical Data
    Xu K.-P.
    Chen L.-F.
    Sun H.-J.
    Wang B.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (11): : 3492 - 3505
  • [23] The performance of objective functions for clustering categorical data
    Xiang, Zhengrong
    Islam, Md Zahidul
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8863 : 16 - 28
  • [24] Generalized Similarity Measure for Categorical Data Clustering
    Sharma, Shruti
    Singh, Manoj
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 765 - 769
  • [25] EnsCat: clustering of categorical data via ensembling
    Clarke, Bertrand S.
    Amiri, Saeid
    Clarke, Jennifer L.
    BMC BIOINFORMATICS, 2016, 17
  • [26] Squeezer: An efficient algorithm for clustering categorical data
    He, ZY
    Xu, XF
    Deng, SC
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2002, 17 (05) : 611 - 624
  • [27] Clustering Categorical Data Using Hierarchies (CLUCDUH)
    Silahtaroglu, Gökhan
    World Academy of Science, Engineering and Technology, 2009, 56 : 334 - 339
  • [28] Clustering categorical data based on distance vectors
    Zhang, P
    Wang, XG
    Song, PXK
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) : 355 - 367
  • [29] Squeezer: An efficient algorithm for clustering categorical data
    Zengyou He
    Xiaofei Xu
    Shengchun Deng
    Journal of Computer Science and Technology, 2002, 17 : 611 - 624
  • [30] EnsCat: clustering of categorical data via ensembling
    Bertrand S. Clarke
    Saeid Amiri
    Jennifer L. Clarke
    BMC Bioinformatics, 17