Nonstandard Lagrangian cosmology

被引:29
作者
El-Nabulsi, Rami Ahmad [1 ]
机构
[1] Neijiang Normal Univ, Coll Math & Informat Sci, Neijiang 641112, Sichuan, Peoples R China
关键词
Nonstandard Lagrangians; FRW cosmology; Spacetime model;
D O I
10.1186/2251-7235-7-58
中图分类号
O59 [应用物理学];
学科分类号
摘要
We show that many independent scenarios as the 'accelerated expansion of the universe', 'eternal inflation', 'eternally oscillating universe', 'nonsingular oscillating universe', and 'collapse of an oscillating universe' may occur without modifying the gravity theory or introducing scalar fields of any type. This is achieved by replacing the standard Lagrangian in the Friedmann-Robertson-Walker spacetime model by an exponentially nonstandard Lagrangian which modify the Euler-Lagrange equation although the standard variational approach is used.
引用
收藏
页数:12
相关论文
共 73 条
[1]   CLASSICAL YANG-MILLS FIELD-THEORY WITH NONSTANDARD LAGRANGIANS [J].
ALEKSEEV, AI ;
ARBUZOV, BA .
THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 59 (01) :372-378
[2]   CLASSICAL NON-ABELIAN SOLUTIONS FOR NONSTANDARD LAGRANGIANS [J].
ALEKSEEV, AI ;
VSHIVTSEV, AS ;
TATARINTSEV, AV .
THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 77 (02) :1189-1197
[3]  
Amendola L., 2010, DARK ENERGY THEORY O, DOI DOI 10.1017/CBO9780511750823.011
[4]  
Ander MM, 2011, PHYS REV D, VD81
[5]  
Arnold V. I, 1989, MATH METHODS CLASSIC, VSecond, DOI DOI 10.1007/978-1-4757-1693-1
[6]   Periodic Cosmological Evolutions of Equation of State for Dark Energy [J].
Bamba, Kazuharu ;
Debnath, Ujjal ;
Yesmakhanova, Kuralay ;
Tsyba, Petr ;
Nugmanova, Gulgasyl ;
Myrzakulov, Ratbay .
ENTROPY, 2012, 14 (11) :2351-2374
[7]   ETERNAL INFLATION AND THE INITIAL SINGULARITY [J].
BORDE, A ;
VILENKIN, A .
PHYSICAL REVIEW LETTERS, 1994, 72 (21) :3305-3308
[8]   Reparametrization-invariant Hamiltonian formalism in the general theory of relativity [J].
Borowiec, A ;
Smirichinski, VI .
PHYSICS OF ATOMIC NUCLEI, 2001, 64 (02) :354-363
[9]   Eternal inflation predicts that time will end [J].
Bousso, Raphael ;
Freivogel, Ben ;
Leichenauer, Stefan ;
Rosenhaus, Vladimir .
PHYSICAL REVIEW D, 2011, 83 (02)
[10]   Lagrangian formalism for nonlinear second-order Riccati systems:: One-dimensional integrability and two-dimensional superintegrability -: art. no. 062703 [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (06)