ON EDGE-COLORING INDIFFERENCE GRAPHS

被引:0
|
作者
DEFIGUEIREDO, CMH [1 ]
MEIDANIS, J [1 ]
DEMELLO, CP [1 ]
机构
[1] UNIV ESTADUAL CAMPINAS, DEPT CIENCIA COMP, BR-13081970 CAMPINAS, SP, BRAZIL
来源
LATIN '95: THEORETICAL INFORMATICS | 1995年 / 911卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Vizing's theorem states that the chromatic index chi'(G) of a graph G is either the maximum degree Delta(G) or Delta(G) + 1. A graph G is called overfull if \E(G)\ > Delta(G)right perpendicular\V(G)\/2 left perpendicular. A sufficient condition for chi'(G) = Delta(G) + 1 is that G contains an overfull subgraph H with Delta(H) = Delta(G). Plantholt proved that this condition is necessary for graphs with a universal vertex. In this paper, we conjecture that, for indifference graphs, this is also true. As supporting evidence, we prove this conjecture for general graphs with three maximal cliques and with no universal vertex, and for indifference graphs with odd maximum degree. For the latter subclass, we prove that chi' = Delta.
引用
收藏
页码:286 / 299
页数:14
相关论文
共 50 条
  • [1] ON EDGE-COLORING GRAPHS
    HOFFMAN, T
    MITCHEM, J
    SCHMEICHEL, E
    ARS COMBINATORIA, 1992, 33 : 119 - 128
  • [2] Edge-coloring bipartite graphs
    Kapoor, A
    Rizzi, R
    JOURNAL OF ALGORITHMS, 2000, 34 (02) : 390 - 396
  • [3] A GENERALIZATION OF EDGE-COLORING IN GRAPHS
    HAKIMI, SL
    KARIV, O
    JOURNAL OF GRAPH THEORY, 1986, 10 (02) : 139 - 154
  • [4] Edge-Coloring of Split Graphs
    de Almeida, Sheila Morais
    de Mello, Celia Picinin
    Morgana, Aurora
    ARS COMBINATORIA, 2015, 119 : 363 - 375
  • [5] Strong edge-coloring for jellyfish graphs
    Chang, Gerard J.
    Chen, Sheng-Hua
    Hsu, Chi-Yun
    Hung, Chia-Man
    Lai, Huei-Ling
    DISCRETE MATHEMATICS, 2015, 338 (12) : 2348 - 2355
  • [6] Strong edge-coloring of planar graphs
    Hudak, David
    Luzar, Borut
    Sotak, Roman
    Skrekovski, Riste
    DISCRETE MATHEMATICS, 2014, 324 : 41 - 49
  • [7] Revisiting semistrong edge-coloring of graphs
    Luzar, Borut
    Mockovciakova, Martina
    Sotak, Roman
    JOURNAL OF GRAPH THEORY, 2024, 105 (04) : 612 - 632
  • [8] RECENT PROGRESS ON EDGE-COLORING GRAPHS
    HILTON, AJW
    DISCRETE MATHEMATICS, 1987, 64 (2-3) : 303 - 307
  • [9] Injective edge-coloring of subcubic graphs
    Ferdjallah, Baya
    Kerdjoudj, Samia
    Raspaud, Andre
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (08)
  • [10] Note on injective edge-coloring of graphs
    Miao, Zhengke
    Song, Yimin
    Yu, Gexin
    DISCRETE APPLIED MATHEMATICS, 2022, 310 : 65 - 74