Improved algorithms for the calculation of Fibonacci numbers

被引:1
|
作者
Foundas, E. [1 ]
Lytras, Ch. [1 ]
Patsakis, C. [1 ]
机构
[1] Univ Piraeus, Dept Informat, 80 Karaoli & Dimitriou St, Piraeus 18534, Greece
关键词
Fibonacci numbers; Lucas numbers; improved algorithms;
D O I
10.1080/09720529.2008.10698170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present new algorithms that compute Fibonacci numbers, having complexity less than log root n based on recursive algorithms. All the algorithms are in tail-recursive form so they can easily be converted to their iterative form.
引用
收藏
页码:113 / 120
页数:8
相关论文
共 50 条
  • [1] Fibonacci numbers as mixed concatenations of Fibonacci and Lucas numbers
    Altassan, Alaa
    Alan, Murat
    MATHEMATICA SLOVACA, 2024, 74 (03) : 563 - 576
  • [2] δ-FIBONACCI NUMBERS
    Witula, Roman
    Slota, Damian
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2009, 3 (02) : 310 - 329
  • [3] δ-FIBONACCI AND δ-LUCAS NUMBERS, δ-FIBONACCI AND δ-LUCAS POLYNOMIALS
    Witula, Roman
    Hetmaniok, Edyta
    Slota, Damian
    Pleszczynski, Mariusz
    MATHEMATICA SLOVACA, 2017, 67 (01) : 51 - 70
  • [4] On Hyperbolic Numbers With Generalized Fibonacci Numbers Components
    Soykan, Yuksel
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2021, 12 (04): : 987 - 1004
  • [5] FIBONACCI NUMBERS THAT ARE η-CONCATENATIONS OF LEONARDO AND LUCAS NUMBERS
    Taher, Hunar Sherzad
    Dash, Saroj Kumar
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2025, 78 (02): : 171 - 180
  • [6] On Concatenations of Fibonacci and Lucas Numbers
    Alan, Murat
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2725 - 2741
  • [7] On Concatenations of Fibonacci and Lucas Numbers
    Murat Alan
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2725 - 2741
  • [8] Distance Fibonacci numbers, distance Lucas numbers and their applications
    Brod, Dorota
    Piejko, Krzysztof
    Wloch, Iwona
    ARS COMBINATORIA, 2013, 112 : 397 - 409
  • [9] Recursive algorithms in computer science courses: Fibonacci numbers and binomial coefficients
    Stojmenovic, I
    IEEE TRANSACTIONS ON EDUCATION, 2000, 43 (03) : 273 - 276
  • [10] On generalized Pell numbers generated by Fibonacci and Lucas numbers
    Szynal-Liana, Anetta
    Wloch, Andrzej
    Wloch, Iwona
    ARS COMBINATORIA, 2014, 115 : 411 - 423