DIVISION RINGS AND GROUP VON-NEUMANN-ALGEBRAS

被引:79
作者
LINNELL, PA [1 ]
机构
[1] UNIV ESSEN GESAMTHSCH,INST EXPTL MATH,W-4300 ESSEN 12,GERMANY
关键词
D O I
10.1515/form.1993.5.561
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a discrete group, let W(G) denote the group von Neumann algebra of G, and let U(G) denote the set of closed densely defined linear operators affiliated to W(G). If G is torsion free and has a normal free subgroup H such that G/H is elementary amenable, then we shall prove that there exists a division ring D such that CG subset-or-equal-to D subset-or-equal-to U(G). For G as above, this will establish the integrality of numbers arising from L2-cohomology associated with G.
引用
收藏
页码:561 / 576
页数:16
相关论文
共 22 条
[1]   THE MAXIMAL RING OF QUOTIENTS OF A FINITE VONNEUMANN ALGEBRA [J].
BERBERIAN, SK .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1982, 12 (01) :149-164
[2]  
BERBERIAN SK, 1972, BAER STAR RINGS, V195
[3]   L2-COHOMOLOGY AND GROUP COHOMOLOGY [J].
CHEEGER, J ;
GROMOV, M .
TOPOLOGY, 1986, 25 (02) :189-215
[4]   VONNEUMANN DIMENSION AND THE HOMOLOGY OF COVERING SPACES [J].
COHEN, JM .
QUARTERLY JOURNAL OF MATHEMATICS, 1979, 30 (118) :133-142
[5]  
COHEN JM, 1988, REND CIRC MAT PALM S, V18, P31
[6]  
Cohn P., 1985, FREE RINGS THEIR REL, V2nd ed.,
[7]  
Connes A., 1985, PUBL MATH-PARIS, V62, P257, DOI 10.1007/BF02698807
[8]   THE HNN CONSTRUCTION FOR RINGS [J].
DICKS, W .
JOURNAL OF ALGEBRA, 1983, 81 (02) :434-487
[9]  
Dicks W., 1989, CAMBRIDGE STUD ADV M, V17
[10]   WHY THE CIRCLE IS CONNECTED - AN INTRODUCTION TO QUANTIZED TOPOLOGY [J].
EFFROS, EG .
MATHEMATICAL INTELLIGENCER, 1989, 11 (01) :27-34