TUNNELING IN MULTIDIMENSIONAL WELLS

被引:2
作者
Pankratova, T. F. [1 ]
机构
[1] ITMO Univ, St Petersburg, Russia
来源
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS | 2015年 / 6卷 / 01期
关键词
odinger operator; potential; tunneling; eigenvalues and eigenfunctions;
D O I
10.17586/2220-8054-2015-6-1-113-121
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A full asymptotic series for low eigenvalues and eigenfunctions of a stationary Schrodinger operator with a nondegenerate well was constructed in [29]. This allowed us to describe the tunneling effect for a potential with two or more identical wells with sufficient accuracy. The procedure is described in the following discussion. Some formulae are obtained and corresponding problems are discussed.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 32 条
[1]  
Alenitsyn A.G., 1982, DIFFER URAVNENIYA, V18, P1971
[2]  
Arnold V, 1989, MATH METHODS CLASSIC
[3]  
Arnold V., 2006, ENCYCL MATH SCI, V3
[4]  
Arnold V.I., 1972, FUNK ANAL PRILOZH, V6, P12
[5]  
BELLISSARD J, 1990, ANN I H POINCARE-PHY, V52, P175
[6]  
Delabaere E., 1991, THESIS
[7]  
Dobrokhotov S.Yu., 1992, ADV SOV MATH, V13, P1
[8]   STABLE LEGENDRE CONFIGURATION GERMS AND GENERALIZED AIRY-WEBER FUNCTIONS [J].
DUC, NH ;
PHAM, F .
ANNALES DE L INSTITUT FOURIER, 1991, 41 (04) :905-936
[9]  
FEDORYUK MV, 1965, MAT SBORNIK, V68, P81
[10]   THE SCHRODINGER-EQUATION AND CANONICAL PERTURBATION-THEORY [J].
GRAFFI, S ;
PAUL, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (01) :25-40