Variational Homotopy Perturbation Method: An efficient scheme for solving partial differential equations in fluid mechanics

被引:4
作者
Allahviranloo, T. [1 ]
Armand, A. [2 ]
Pirmuhammadi, S. [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran, Iran
[2] Islamic Azad Univ, Young Researchers & Elite Club, Shahr E Rey Branch, Tehran, Iran
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2014年 / 9卷 / 04期
关键词
Variational homotopy perturbation method; Korteweg-de Vries equation; Burgers equation;
D O I
10.22436/jmcs.09.04.12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an application of variationalhomotopy perturbation method is applied to solve Korteweg-de Vries (KdV) and Burgers equations. The study reveals that the method is very effective and simple.
引用
收藏
页码:362 / 369
页数:8
相关论文
共 23 条
[1]   Application of He's homotopy perturbation method for Laplace transform [J].
Abbasbandy, S. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1206-1212
[2]   Numerical solution of non-linear Klein-Gordon equations by variational iteration method [J].
Abbasbandy, Saeid .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 70 (07) :876-881
[3]   Variational iteration method for solving Burger's and coupled Burger's equations [J].
Abdou, MA ;
Soliman, AA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 181 (02) :245-251
[4]  
Bagheri M, 2012, J MATH COMPUT SCI-JM, V5, P288
[5]   Homotopy-perturbation method for pure nonlinear differential equation [J].
Cveticanin, L. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1221-1230
[6]  
Fernandez F. M., 2011, MATH PHYS, V1, P1
[7]  
Goodarzian H., 2012, INT J PHYS SCI, V7, P234
[8]   Analytic studies and numerical simulations of the generalized Boussinesq equation [J].
Hajji, Mohamed Ali ;
Al-Khaled, Kamel .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (02) :320-333
[9]   Variational iteration method for autonomous ordinary differential systems [J].
He, JH .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 114 (2-3) :115-123
[10]   Variational principles for some nonlinear partial differential equations with variable coefficients [J].
He, JH .
CHAOS SOLITONS & FRACTALS, 2004, 19 (04) :847-851