FUZZY PRIME AND SEMIPRIME S-SUBACTS OVER MONOIDS

被引:2
作者
Ahsan, J. [1 ]
Saifullah, K. [2 ]
Shabir, M. [3 ]
机构
[1] Int Islamic Univ, Dept Math, Fac Sci Appl, Islamabad, Pakistan
[2] King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
[3] Quid i Azam Univ, Dept Math, Islamabad, Pakistan
关键词
Fuzzy S-subacts; fuzzy irreducible ideals; fuzzy irreducible S-subacts; fuzzy annihilator; fuzzy prime and fuzzy semiprime S-subacts;
D O I
10.1142/S1793005707000616
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the notions of fuzzy prime and fuzzy semiprime S-subacts, where S is a monoid with a zero and S-acts are representations of S. We establish their basic properties and prove some fundamental results in a fuzzy context, analogous to the results in ordinary semigroups and S-acts. It is shown, among other results, that if a fuzzy right S-subact is fuzzy irreducible, then the difference between fuzzy prime and fuzzy semiprime disappears.
引用
收藏
页码:41 / 55
页数:15
相关论文
共 18 条
[1]   FUZZY SEMIRINGS [J].
AHSAN, J ;
SAIFULLAH, K ;
KHAN, MF .
FUZZY SETS AND SYSTEMS, 1993, 60 (03) :309-320
[2]   CHARACTERIZATIONS OF MONOIDS BY THE PROPERTIES OF THEIR FUZZY SUBSYSTEMS [J].
AHSAN, J ;
KHAN, MF ;
SHABIR, M .
FUZZY SETS AND SYSTEMS, 1993, 56 (02) :199-208
[3]   RINGS CHARACTERIZED BY THEIR FUZZY SUBMODULES [J].
AHSAN, J ;
KHAN, MF ;
SHABIR, M ;
ZAMAN, N .
INFORMATION SCIENCES, 1993, 74 (03) :247-264
[4]  
Ahsan J., 2001, MATH J IBARAKI U, V33, P9, DOI [10.5036/mjiu.33.9, DOI 10.5036/MJIU.33.9]
[5]  
Ahsan J., 1995, FUZZY SYST MATH, V9, P29
[6]  
[Anonymous], 1979, COMMENTARII MATH U S
[7]  
DAUNS J, 1978, J REINE ANGEW MATH, V298, P156
[8]   MAKING MODULES FUZZY [J].
GOLAN, JS .
FUZZY SETS AND SYSTEMS, 1989, 32 (01) :91-94
[9]  
Kuroki N., 1975, COMMENTARII MATH U S, V24, P21
[10]  
Kuroki N., 1995, J FUZZY MATH, V36, P435