COMPLEX MONGE-AMPERE AND SYMPLECTIC-MANIFOLDS

被引:205
作者
SEMMES, S
机构
关键词
D O I
10.2307/2374768
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:495 / 550
页数:56
相关论文
共 19 条
[1]  
Arnold V.I, 1978, GRADUATE TEXTS MATH
[2]   FOLIATIONS AND COMPLEX MONGE-AMPERE EQUATIONS [J].
BEDFORD, E ;
KALKA, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (05) :543-571
[3]   VARIATIONAL PROPERTIES OF COMPLEX MONGE-AMPERE EQUATION .1. DIRICHLET PRINCIPLE [J].
BEDFORD, E ;
TAYLOR, BA .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (02) :375-403
[4]  
BEFORD E, 1979, AM J MATH, V101, P1131
[5]  
COIFMAN R, IN PRESS AM J MATH
[6]  
Coifman R. R., 1979, LECT NOTES MATH, V779, p[Zbl, 123]
[7]   A THEORY OF COMPLEX INTERPOLATION FOR FAMILIES OF BANACH-SPACES [J].
COIFMAN, RR ;
CWIKEL, M ;
ROCHBERG, R ;
SAGHER, Y ;
WEISS, G .
ADVANCES IN MATHEMATICS, 1982, 43 (03) :203-229
[8]   GROUPS OF DIFFEOMORPHISMS AND MOTION OF AN INCOMPRESSIBLE FLUID [J].
EBIN, DG ;
MARSDEN, J .
ANNALS OF MATHEMATICS, 1970, 92 (01) :102-&
[9]   ON SPHERICAL IMAGE MAPS WHOSE JACOBIANS DO NOT CHANGE SIGN [J].
HARTMAN, P ;
NIRENBERG, L .
AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (04) :901-920
[10]  
Helgason S., 1978, DIFFERENTIAL GEOMETR