Seven Proofs for the Subadditivity of Expected Shortfall

被引:21
作者
Embrechts, Paul [2 ]
Wang, Ruodu [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[2] Swiss Fed Inst Technol, Dept Math, RiskLab, CH-8092 Zurich, Switzerland
基金
加拿大自然科学与工程研究理事会;
关键词
Expected Shortfall; TVaR; subadditivity; comonotonicity; Value-at-Risk; risk management; education;
D O I
10.1515/demo-2015-0009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Subadditivity is the key property which distinguishes the popular risk measures Value-at-Risk and Expected Shortfall (ES). In this paper we offer seven proofs of the subadditivity of ES, some found in the literature and some not. One of the main objectives of this paper is to provide a general guideline for instructors to teach the subadditivity of ES in a course. We discuss the merits and suggest appropriate contexts for each proof. With different proofs, different important properties of ES are revealed, such as its dual representation, optimization properties, continuity, consistency with convex order, and natural estimators.
引用
收藏
页码:126 / 140
页数:15
相关论文
共 39 条
[21]   Some new classes of consistent risk measures [J].
Goovaerts, MJ ;
Kaas, R ;
Dhaene, J ;
Tang, QH .
INSURANCE MATHEMATICS & ECONOMICS, 2004, 34 (03) :505-516
[22]  
Hoeffding W., 1940, SCHR MATH I U BERLIN, V5, P181
[23]  
Huber P.J, 1980, WILEY SERIES PROBABI
[24]  
Huber PJ, 2009, WILEY SERIES PROBABI
[25]  
IAIS, 2014, CONS DOC DEC 2014 RI
[26]  
Kaas R., 2008, MODERN ACTUARIAL RIS, V128
[27]   ORDERING UNCERTAIN OPTIONS WITH BORROWING AND LENDING [J].
LEVY, H ;
KROLL, Y .
JOURNAL OF FINANCE, 1978, 33 (02) :553-574
[28]  
McNeil A., 2015, QUANTITATIVE RISK MA
[29]  
McNeil A., 2005, QUANTITATIVE RISK MA
[30]   CONVEX MAJORIZATION WITH AN APPLICATION TO THE LENGTH OF CRITICAL PATHS [J].
MEILIJSON, I ;
NADAS, A .
JOURNAL OF APPLIED PROBABILITY, 1979, 16 (03) :671-677