THE CU-C BOND-DISSOCIATION ENERGY OF CUCH3 - A DRAMATIC FAILURE OF THE QCISD(T) METHOD

被引:39
作者
BOHME, M [1 ]
FRENKING, G [1 ]
机构
[1] PHILIPPS UNIV MARBURG, FACHBEREICH CHEM, HANS MEERWEIN STR, D-35032 MARBURG, GERMANY
关键词
D O I
10.1016/0009-2614(94)00526-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The copper-carbon bond dissociation energy of CuCH3 is calculated using coupled cluster (CC) theory and the quadratic CI approach (QCI) in conjunction with an effective core potential (ECP) for Cu. The results at the CCSD (D(e)=45.4 kcal/mol) and CCSD(T) level (D(e)=48.0 kcal/mol) are in good agreement with previous high-level calculations using the MCPF approach (D(e)=48.4 kcal/mol). The theoretically predicted dissociation energy at the QCISD(T) level shows a dramatic failure of the estimate for the triple excitations in CuCH3. The QCISD value is De(=55.4 kcal/mol, the QCISD(T) values is D(e)=6.0 kcal/mol. The QCISD(T) method predicts clearly different dissociation energies when the core electrons are explicitly included in the calculations, while the CCSD(T) method gives similar results to the ECP calculations. The predicted dissociation energy using a large all-electron basis set is D(e)=52.7 kcal/mol at QCISD and D(e)=29.4 kcal/mol at QCISD(T). The CCSD method gives with the same basis set D(e)=46.0 kcal/mol; the value at CCSD(T) is D(e)=49.7 kcal/mol.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 36 条
[1]   THE COUPLED PAIR FUNCTIONAL (CPF) - A SIZE CONSISTENT MODIFICATION OF THE CI(SD) BASED ON AN ENERGY FUNCTIONAL [J].
AHLRICHS, R ;
SCHARF, P ;
EHRHARDT, C .
JOURNAL OF CHEMICAL PHYSICS, 1985, 82 (02) :890-898
[2]   PERIODIC TRENDS IN GAS-PHASE M-H AND M-C BOND-ENERGIES [J].
ARMENTROUT, PB ;
GEORGIADIS, R .
POLYHEDRON, 1988, 7 (16-17) :1573-1581
[3]   MANY-BODY PERTURBATION-THEORY, COUPLED-PAIR MANY-ELECTRON THEORY, AND IMPORTANCE OF QUADRUPLE EXCITATIONS FOR CORRELATION PROBLEM [J].
BARTLETT, RJ ;
PURVIS, GD .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1978, 14 (05) :561-581
[4]   THEORETICAL-STUDIES OF THE 1ST-ROW AND 2ND-ROW TRANSITION-METAL METHYLS AND THEIR POSITIVE-IONS [J].
BAUSCHLICHER, CW ;
LANGHOFF, SR ;
PARTRIDGE, H ;
BARNES, LA .
JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (04) :2399-2411
[5]   MOLLER-PLESSET THEORY FOR ATOMIC GROUND-STATE ENERGIES [J].
BINKLEY, JS ;
POPLE, JA .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1975, 9 (02) :229-236
[6]   THEORETICAL DIPOLE-MOMENTS FOR THE 1ST-ROW TRANSITION-METAL HYDRIDES [J].
CHONG, DP ;
LANGHOFF, SR ;
BAUSCHLICHER, CW ;
WALCH, SP .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (05) :2850-2860
[7]  
CIZEK J, 1966, J CHEM PHYS, V45, P4256
[8]  
Cizek J., 1969, ADV CHEM PHYS, V14, P35, DOI [10.1002/9780470143599.ch2, DOI 10.1002/9780470143599.CH2]
[9]   EFFICIENT DIFFUSE FUNCTION-AUGMENTED BASIS SETS FOR ANION CALCULATIONS. III. THE 3-21+G BASIS SET FOR FIRST-ROW ELEMENTS, LI-F [J].
CLARK, T ;
CHANDRASEKHAR, J ;
SPITZNAGEL, GW ;
SCHLEYER, PV .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (03) :294-301
[10]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .9. EXTENDED GAUSSIAN-TYPE BASIS FOR MOLECULAR-ORBITAL STUDIES OF ORGANIC MOLECULES [J].
DITCHFIELD, R ;
HEHRE, WJ ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (02) :724-+