AN EXACT SOLUTION TO 2-DIMENSIONAL KORTEWEG-DEVRIES-BURGERS EQUATION

被引:42
作者
MA, WX [1 ]
机构
[1] CCAST WORLD LAB,BEIJING 100080,PEOPLES R CHINA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 01期
关键词
D O I
10.1088/0305-4470/26/1/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By applying a special solution of square Hopf-Cole type to an ordinary differential equation, we propose a bounded travelling wave solution u(x,y,t) = v(xi)= v(kx + ly - omegat) to the two-dimensional Korteweg-de Vries-Burgers equation is monotonic and possesses an inflection point with respect to xi.
引用
收藏
页码:L17 / L20
页数:4
相关论文
共 8 条
[1]  
GAO G, 1985, SCI SINICA A, V28, P457
[2]  
Guan K. Y., 1987, SCI SINICA A, V30, P64
[3]   KORTEWEG-DEVRIES-BURGERS EQUATION AND THE PAINLEVE PROPERTY [J].
HALFORD, WD ;
VLIEGHULSTMAN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08) :2375-2379
[4]   EXACT-SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGERS EQUATION [J].
JEFFREY, A ;
XU, SQ .
WAVE MOTION, 1989, 11 (06) :559-564
[5]   A NON-LINEAR EQUATION INCORPORATING DAMPING AND DISPERSION [J].
JOHNSON, RS .
JOURNAL OF FLUID MECHANICS, 1970, 42 :49-&
[6]  
KRUSKAI MD, 1990, PARTIALLY INTEGRABLE, P321
[7]  
van Wijngaarden L., 1972, ANNU REV FLUID MECH, V4, P369, DOI [DOI 10.1146/ANNUREV.FL.04.010172.002101, /10.1146/annurev.fl.04.010172.002101]
[8]  
XIONG SL, 1989, CHINESE SCI BULL, V34, P1158