POSITIVE SEQUENCE TOPOLOGICAL-ENTROPY CHARACTERIZES CHAOTIC MAPS

被引:39
作者
FRANZOVA, N
SMITAL, J
机构
关键词
D O I
10.2307/2048657
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a continuous map f of the interval is chaotic (in the sense of Li and Yorke) iff its sequence topological entropy h(A)(f) relative to a suitable increasing sequence A of times is positive. This result is interesting since the ordinary topological entropy h(f) of chaotic maps can be zero.
引用
收藏
页码:1083 / 1086
页数:4
相关论文
共 6 条
[1]   CHARACTERIZATIONS OF WEAKLY CHAOTIC MAPS OF THE INTERVAL [J].
FEDORENKO, VV ;
SARKOVSKII, AN ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (01) :141-148
[2]  
GOODMAN TNT, 1974, P LOND MATH SOC, V29, P331
[3]   THE SEQUENCE ENTROPY FOR MORSE SHIFTS AND SOME COUNTEREXAMPLES [J].
LEMANCZYK, M .
STUDIA MATHEMATICA, 1985, 82 (03) :221-241
[4]  
SARKOVSKII AN, 1964, DOPOVIDI AKAD UKRA A, P865
[5]  
Sharkovsky A.N., 1967, DOPOV AKAD NAUK R A, V5, P429
[6]   CHAOTIC FUNCTIONS WITH ZERO TOPOLOGICAL-ENTROPY [J].
SMITAL, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (01) :269-282